ALGEBRAIC GEOMETRY

ZIWEI WEI

ABSTRACT. This is my personal note¹ of course Advanced Geometry 3 taught by Prof. Fabio Perroni in spring 2024 at University of Trieste. And as the title, this course is focused on algebraic geometry, especially on algebraic varieties over \mathbb{C} . The latest version can be found on my website:

This note is not completely following what's on the blackbord. The materials might be re-organized or have some slightly changes. I will also add some supplementary materials which will be marked by *.

Attention: there are definitely a considerable number of mistakes in this note, and all due to me. If you have any comments, corrections or suggestions, please send them to zwei@sissa.it. Any feedback is appreciated!

Contents

0. Preface	3
1. Affine Varieties	3
1.1. Algebraic subsets	3
1.2. Affine varieties	4
1.3. Tangent spaces of affine varieties	6
1.4. Tangent spaces and derivations	7
1.5. Dimension theory	7
1.6. Structure of affine varieties at smooth points.	13
1.7. The local ring of a point	14
1.8. Power series expansions	15
1.9. Analytic structure of smooth point	19
1.10. $\mathcal{O}_{X,a}$ is a UFD	19
1.11. Morphisms between affine varieties	22
1.12. Appendix. primary decomposition	24
1.13. Appendix. transcendental extension	25
1.14. Appendix. Localization	25
2. Projective Varieties	26
2.1. Projective Space	26
2.2. Projective Varieties	28
2.3. Divisors	33
2.4. Grassmannians	35

Date: April 15, 2024.

 $\mathbf{2}$

ZIWEI WEI

References

0. Preface

The main reference is [5].

...

1. Affine Varieties

1.1. Algebraic subsets. All ring will be assumed as commutative ring with unit.

Definition 1.1.1. A closed algebraic subset $X \subset \mathbb{C}^n$ is the set of zeroes of a finite numbers of polynomials

$$X = \{a = (a_1, \dots, a_n) \mid f_i(a_1, \dots, a_n) = 0, \forall i = 1, \dots, m\}$$

where $f_i \in \mathbb{C}[x_1, \ldots, x_n]$.

It is also denoted by $V(f_1, \ldots, f_m)$.

Remark 1.1. The ideal generated by f_1, \ldots, f_m is

$$I = (f_1, \ldots, f_m) = \{ \sum g_i f_i \mid g_i \in \mathbb{C}[x_1, \ldots, x_n] \}.$$

And the set of zeroes of I is $X = V(I) = \{a \in \mathbb{C}^n \mid f(a) = 0, \forall f \in I\}.$

By Hilbert basis theorem, every ideal $I \subset \mathbb{C}[x_1, \ldots, x_n]$ is f.g., i.e., $\exists f_1, \ldots, f_m$ s.t. $I = (f_1, \ldots, f_m)$. Hence we will talk about $V(I), I \subset \mathbb{C}[x_1, \ldots, x_n]$.

Proposition 1.1.1. Let $I_1, I_2, \{I_\alpha\}_{\alpha \in A}$ be ideas of $\mathbb{C}[x_1, \ldots, x_n]$. $a = (a_1, \ldots, a_n) \in$ \mathbb{C}^n . Then the following hold true.

- (1) If $I_1 \subset I_2$, then $V(I_2) \subset V(I_1)$,
- (2) $V(I_1) \cup V(I_2) = V(I_1 \cap I_2) = V(I_1 \cdot I_2) \ (I_1I_2 = \{fg | f \in I_1, g \in I_2\}),$
- (3) $V(\sum_{\alpha \in A} I_{\alpha}) = \bigcap_{\alpha \in A} V(I_{\alpha}),$ (4) If $\mathfrak{m}_{a} := (x_{1} a_{1}, \dots, x_{n} a_{n}), \text{ then } V(\mathfrak{m}_{a}) = \{a\},$
- (5) $V(\sqrt{I}) = V(I)$ $(\sqrt{I} = \{f \in \mathbb{C}[x_1, \dots, x_n] \mid f^K \in I \text{ for some } K > 0\}).$

Proof. (1) evident.

(2) Since $I_1I_2 \subset I_1 \cap I_2 \subset I_1, I_2$, (1) implies that

$$V(I_1I_2) \supset V(I_1 \cap I_2) \supset V(I_1), V(I_2).$$

Conversely, let $a \in V(I_1I_2)$. If $a \notin V(I_1 \cap I_2)$, then $\exists f \in I_1 \cap I_2$ s.t. $f(1) \neq 0$. Then $f^2(a) \neq 0$, but $f^2 \in I_1 I_2$. The remain is similar.

- (3) (C) $I_{\alpha} \subset \sum I_{\alpha} \forall \alpha$, hence $V(\sum I_{\alpha}) \subset V(I_{\alpha}) \forall \alpha$. (\supset) Immediately.
- (4) $b \in V_{\mathfrak{m}_a}$ iff $b_i a_i = 0, \forall i$.
- (5) (\subset) $\sqrt{I} \supset I$ (\supset) Let $a \in V(I)$. If $a \notin V(\sqrt{I})$, then $\exists f \in \sqrt{I}$ s.t. $f(a) \neq 0$. Hence $f^{K}(a) \neq 0$. contradiction.

Remark 1.2. (1) It can happen that $I_1I_2 \subsetneqq I_1 \cap I_2$,

(2) \sqrt{I} is an ideal and it is called the radical of I,

ZIWEI WEI

(3) **Proposition 1.1.1**(2), (3) implies that algebraic subsets of \mathbb{C}^n satisfy the axiom of closed sets of a topology on \mathbb{C}^n and it is called **Zariski topology**.

Remark 1.3. The Zariski topology is not Hausdorff unless the base field \Bbbk is finite.

1.2. Affine varieties.

4

Definition 1.2.1. An **affine variety** is a non-empty closed algebraic set $X \subset \mathbb{C}^n$ of the form X = V(P) with P prime ideal.

Example 1.2.1. Let $f \in \mathbb{C}[x_1, \ldots, x_n]$ be irrd. Then $V(f) = V((f)) \subset \mathbb{C}^n$ is an affine variety and it is called an hypersurface of \mathbb{C}^n . Note that if f is not irrd then (f) is not prime.

Example 1.2.2. Let $g_2, ..., g_n \in \mathbb{C}[x_1]$. Consider $X := \{(a, g_2(a), ..., g_n(a)) \in \mathbb{C}^n \mid a \in \mathbb{C}\}.$

It is a closed algebraic subset by $X = V(x_2 - g_2(x_1), \ldots, x_n - g_n(x_1))$. And since $\mathbb{C}[x_1, \cdots, x_n]/(x_2 - g_2(x_1), \ldots, x_n - g_n(x_1)) \cong \mathbb{C}[x_1]$ which is a integral domain. Hence X is an affine variety and it is called rational space curve.

Exercise 1.2.1. Let $\varphi_1, \ldots, \varphi_k \subset \mathbb{C}[x_1, \ldots, x_n]$ be homogeneous polynomials of degree 1. Suppose that $\{\varphi_i\}$ are linearly independent as elements of $(\mathbb{C}^n)^*$. Then for any $b_1, \ldots, b_k \in \mathbb{C}$, fixed $X = V(\varphi_1 - b_1, \ldots, \varphi_k - b_k)$, which is the set of solutions of the linear system $\varphi_i = b_i$.

Prove that X is an affine variety. It is called a linear subspace of \mathbb{C}^n of dimension n - k.

Now for any subset $S \subset \mathbb{C}^n$, we can define

 $I(S) := \{ f \in \mathbb{C}[x_1, \dots, x_n] \mid f(a) = 0, \forall a \in S \}.$

We have the following amazing theorem.

Theorem 1.2.1 (Hilbert's Nullstellensatz). For any ideal $J \subset \mathbb{C}[x_1, \ldots, x_n]$,

$$I(V(J)) = \sqrt{J}$$

In particular, if the ideal J is prime, then I(V(J)) = J.

Remark 1.4. (1) The theorem holds true for any algebraic closed field(See [1]).

- (2) It fails if the field is not algebraic closed. For example, take $\mathbb{k} = \mathbb{R}$, $I(V(x^2 + y^2 + 1)) = \mathbb{R}[x, y]$ where $V(x^2 + y^2 + 1)$ is actually empty.
- (3) (Study's lemma) Let $\mathbb{k} = \overline{\mathbb{k}}$. If $f \in \mathbb{k}[x_1, \dots, x_n]$ is irrd, then I(V(f)) = (f)

Lemma* 1.2.1. If $Y_1 \subset Y_2$ are algebraic subsets of \mathbb{C}^n , then $I(Y_1) \supset I(Y_2)$. Proposition* 1.2.1. $V(I(S)) = \overline{S}$ *Proof.* On the one hand we have $S \subset V(I(S))$ where by definition S is closed. Hence $\overline{S} \subset V(I(S))$. On the other hand, recall that the closure

$$\bar{S} = \bigcap W$$

where W runs over all algebraic subsets of \mathbb{C}^n that contain S. And we can write W = V(J) for some ideal J. Then $S \subset V(J)$ and by **Lemma* 1.2.1**, we have $I(S) \supset I(V(J)) \supset J$. Then by **Proposition 1.1.1**(1), $W = V(J) \subset V(I(S))$ for any such W. It follows the statement.

Definition 1.2.2. Let $V(P) \subset \mathbb{C}^n$ be an affine variety. And let $\mathbb{k} \subset \mathbb{C}$ be a subfield. A point $a \in V(P)$ is called a \mathbb{k} -generic point if the following condition holds true: $\forall f \in \mathbb{k}[x_1, \ldots, x_n]$, if f(a) = 0, then $f \in P$.

Example 1.2.3. Consider $g_2, \ldots, g_n \in \mathbb{Q}[x_1]$ and let $X = V(x_2 - g_2(x_1), \ldots, x_n - g_n(x_1))$ be the rational space curve. Let $a := (\pi, g_2(pi), \ldots, g_n(\pi)) \in X$. Then a is \mathbb{Q} -generic.

Indeed, let $f \in \mathbb{Q}[x_1, \ldots, x_n]$ is s.t. f(a) = 0. But $\varphi := f(x_1, x_2 - g_2(x_1), \ldots, x_n - g_n(x_1)) \in \mathbb{Q}[x_1]$, hence $\varphi = 0$. It follows that $\varphi \in P$.

Proposition 1.2.1. Let V(P) be an affine variety. Let $\Bbbk \subset \mathbb{C}$ be a subfield s.t. tr. deg $\mathbb{C}|\Bbbk = \infty$. Then there exists $a \in V(P)$ a \Bbbk -generic point.

Proof. Let $P = (f_1, \ldots, f_m)$ and, WLOG, assume that $f_1, \ldots, f_m \in \Bbbk[x_1, \ldots, x_n]$ (Otherwise let \Bbbk' be the minimal subfield of \mathbb{C} containing \Bbbk and the coefficients of f_1 and f_2 . Then the deg $\mathbb{C}[\Bbbk'] = \infty$ and any \Bbbk' generic point is also

ficients of f_1, \ldots, f_m . Then tr. deg $\mathbb{C}|\mathbb{k}' = \infty$ and any \mathbb{k}' -generic point is also a \mathbb{k} -generic point).

Let $P_0 = P \cap \Bbbk[x_1, \ldots, x_n]$, which is prime. And let K be the fraction field of $\Bbbk[x_1, \ldots, x_n]/P_0$.

Since for any $f/g \in K$, it is a root of $gy - f \in \Bbbk(\bar{x}_1, \ldots, \bar{x}_n)[y]$, where $\bar{x}_1, \ldots, \bar{x}_n$ is the isomorphic class in $\Bbbk[x_1, \ldots, x_n]/P_0$. We have that $K|\Bbbk(\bar{x}_1, \ldots, \bar{x}_n)$ is algebraic. Hence tr. deg $K|\Bbbk \leq n < \infty$.

In this situation, there exists a field homomorphism

$$\phi: K \to \mathbb{C}$$

s.t. $\phi|_K = \mathrm{id}_K(\mathrm{Indeed}, \mathrm{let} \ \lambda_1, \ldots, \lambda_\delta \in K \text{ be a transcendence basis for } K|\mathbb{k}.$ Let $z_1, \ldots, z_\delta \in \mathbb{C}$ be algebraically independent over \mathbb{k} . The map $\lambda_i \mapsto z_i, \forall i$ extends to a unique field homomorphism from $K \to \mathbb{C}$. See [6] Ch.2 Thm 33).

Let $a_i := \phi(\bar{x}_i) \in \mathbb{C}$.

Claim. $a = (a_1, \ldots, a_n) \in X$ is a k-generic point.

Indeed. First we have that $f_i(\bar{x}_1, \ldots, \bar{x}_n) = 0$ $i = 1, \ldots, m$ in $\mathbb{k}[x_1, \ldots, x_n]/P_0$. It follows that

$$0 = \phi(f_i(\bar{x}_1, \dots, \bar{x}_n)) = f_i(\phi(\bar{x}_1), \dots, \phi(\bar{x}_n)) = f_i(a_1, \dots, a_n) \ i = 1, \dots, m.$$

Hence $a \in X$.

Now let $f \in \mathbb{k}[x_1, \ldots, x_n]$ s.t. f(a) = 0. If $f \notin P_0$, then $[f] \in \mathbb{k}[x_1, \ldots, x_n]$ is nonzero. Applying ϕ to this class we get that f(a) = 0, which is contradiction.

Remark 1.5. One could have defined k-generic point for all V(I) where $I \subset \mathbb{C}[x_1, \ldots, x_n]$ is any ideal. But in the following case, it doesn't exist.

Let $I = (xy) \subset \mathbb{C}[x, y]$ be an ideal and $a = (a_1, a_2)$. If $a_2 = 0$, then for $y \subset \Bbbk[x, y], \forall \Bbbk \subset \mathbb{C}, y(a) = a_2 = 0$, but $y \notin I$. It is similar when $a_1 = 0$.

Now we can give a proof of **Theorem 1.2.1**.

Proof. Step 1. Let J = P be prime. Let $f \in I(V(P))$ and \Bbbk be the minimal subfield of \mathbb{C} containing \mathbb{Q} and the coefficients of f. Then tr. deg $\mathbb{C}/\Bbbk = \infty$ and by **Proposition 1.2.1**, there exists a \Bbbk -generic point $a \in X$. And since $f \in I(X), f(a) = 0$, then $f \in P$.

Step 2. Not let J be any ideal and $f \in I(V(J))$. Consider the primary rep

$$\sqrt{J} = P_1 \cap \dots \cap P_N.$$

Then $V(J) = V(\sqrt{J}) = V(P_1) \cup \cdots \cup V(P_N)$. So $f \in I(V(P_i))$ $i = 1, \dots, N$. Then by **Step 1.**, $f \in P_i$ $i = 1, \dots, N$, and $f \in \sqrt{I}$.

Corollary 1.2.1. There is an order-reversing correspondence

$$\{J \subset \mathbb{C}[x_1, \dots, x_n] \mid J = \sqrt{J}\} \leftrightarrow \{\text{closed algebraic subset of } \mathbb{C}^n\}$$
$$J \mapsto V(J)$$
$$I(X) \leftrightarrow X$$

Definition 1.2.3. Let $X = V(P) \subset \mathbb{C}^n$ be an affine variety with $P \subset \mathbb{C}[x_1, \ldots, x_n]$ prime ideal. The ring $R_X := \mathbb{C}[x_1, \ldots, x_n]/P$ is the **affine coordinate ring** of X.

Corollary 1.2.2. In this situation, R_X is isomorphic to the ring of functions $X \to \mathbb{C}$ which are restrictions of polynomials in $\mathbb{C}[x_1, \ldots, x_n]$.

Proof. Let $\mathcal{F}(X) := \{F : X \to \mathbb{C} \mid \text{ s.t. } \exists f \in \mathbb{C}[x_1, \dots, x_n] \text{ s.t. } F(a) = f(a), \forall a.$

Restriction yields an surjective homomorphism

$$\mathbb{C}[x_1,\ldots,x_n] \to \mathcal{F}(X) \to 0$$

and its kernel is P. Then we have the isomorphism.

1.3. Tangent spaces of affine varieties.

Definition 1.3.1. Let X = V(P) be an affine variety with $P \in \mathbb{C}[x_1, \ldots, x_n]$ prime. Let $a \in X$, the **Zariski tangent space** of X at a is the linear subspace of \mathbb{C}^n given by the equations

$$\sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a)(x_i - a_i) = 0, \quad \forall f \in P$$

and denoted by $T_{X,a}^{1}$.

 $\mathbf{6}$

¹I prefer $T_a X$ so I might change this symbol hereafter

Remark 1.6. (1) If $P = (f_1, \ldots, f_m)$, then

$$T_a X = V(\{\sum_{i=0}^m \frac{\partial f_j}{\partial x_i}(a)(x_i - a_i) = 0 \mid j = 1, \dots, m\}).$$

Indeed, (\subset) is obvious. (\supset) If $(b_1, \ldots, b_n) \in \mathbb{C}^n$ is s.t.

$$\sum_{i=0}^{n} \frac{\partial f_j}{\partial x_i}(a)(b_i - a_i) = 0, \ \forall j = 1, \dots, m.$$

Let $f \in P$, we can write $f = \sum_{i=1}^{m} f_i g_i$ for some $g_i \in \mathbb{C}[x_1, \ldots, x_n]$. Then

$$\sum_{i=0}^{n} \frac{\partial f}{\partial x_i}(a)(b_i - a_i) = \sum_{i=0}^{n} \sum_{i=1}^{m} \frac{\partial f_i g_i}{\partial x_i}(a)(b_i - a_i) = 0.$$

(2) $T_a X \subset \mathbb{C}^n$ is an affine subspace passing through a.

1.4. Tangent spaces and derivations. Let $R := R_X$ be the affine coordinate ring of X.

Recall that a **derivation** of R (centered) at $a \in X$ is a \mathbb{C} -linear map

 $D:R\to \mathbb{C}$

s.t.

(1)
$$D(fg) = f(a)D(g) + g(a)D(f), \quad \forall f, g \in R,$$

(2) $D(\lambda) = 0, \quad \forall \lambda \in \mathbb{C}.$

Let $Der_{R,a}$ be the set of such derivations.

Remark 1.7. $Der_{R,a}$ is a vector space over \mathbb{C} .

Proposition 1.4.1. Let $\bar{x}_1, \ldots, \bar{x}_n \in R$ be the classes of x_1, \ldots, x_n . Then the map

$$\varphi: Der_{R,a} \to \mathbb{C}^n$$
$$D \mapsto (D(\bar{x}_1), \dots, D(\bar{x}_n))$$

is an injective linear map and its image is $T_aX - a$.

Proof. Exercise.

1.5. **Dimension theory.** The Zariski tangent space we have defined before is an affine subspace of \mathbb{C}^n . As a vector space, it has dimension

$$\dim T_a X = n - \operatorname{rk}(\frac{\partial f_j}{\partial x_i(a)})_{i,j}.$$

For any $k \in \mathbb{N}$, we have

$$\{a \in X \mid \dim T_a X \ge k\} = \{a \in X \mid \operatorname{rk}(\frac{\partial f_j}{\partial x_i(a)})_{i,j} \le n-k\}$$
$$= \{a \in X \mid \text{the determinants of all minors of } ?$$
$$(n-k+1) \times (n-k+1) \text{ of } \frac{\partial f_j}{\partial x_i(a)} \text{ are } 0\}.$$

Hence $\{a \in X \mid \dim T_a X \ge k\}$ is a closed subset of X in the Zariski topology of X.

Remark 1.8. (1) $\{a \in X \mid \dim T_a X \ge k\} \subset \{a \in X \mid \dim T_a X \ge k-1\},$ (2) Let $d := \min\{\dim T_a X \mid a \in X\}$. Observe that

$$U := \{a \in X \mid \dim T_a X = d\} = X - \{a \in X \mid \dim T_a X \ge d + 1\}$$

is open and nonempty.

Proposition 1.5.1. Let X = V(P) be an affine variety with $P \subset \mathbb{C}[x_1, \ldots, x_n]$ prime. Let $\mathbb{C}(X) = \operatorname{Frac}(R_X)$. ($\mathbb{C}(X)$ is called the field of rational functions of X) Then

$$d = \operatorname{tr.deg}(\mathbb{C}(X)/\mathbb{C}).$$

Definition 1.5.1. The dimension of an affine variety X is dim $X := \text{tr. deg}(\mathbb{C}(X)|X)$.

And a point $a \in X$ is smooth if dim $T_a X = \dim X$. $a \in X$ is singular if dim $T_a X > \dim X$.

Remark 1.9. Let $\bar{x}_1, \ldots, \bar{x}_n \in R_X$ be the classes of x_1, \ldots, x_n . Then $\mathbb{C}(X) = \mathbb{C}[\bar{x}_1, \ldots, \bar{x}_n]$.

Indeed. (\subset) is clear.

 (\supset) Let $\frac{\bar{f}}{\bar{g}} \in \mathbb{C}(X)$ where $\bar{f}, \bar{g} \in R_X$ and $\bar{g} \neq 0$. And \bar{f}, \bar{g} are the classes of f, g respectively. Then \bar{f}, \bar{g} are polynomials in $\bar{x}_1, \ldots, \bar{x}_n$. Then $\frac{\bar{f}}{\bar{g}} \in bC[\bar{x}_1, \ldots, \bar{x}_n]$.

It implies that tr. $\deg(\mathbb{C}(X)|\mathbb{C}) < \infty$.

Example 1.5.1. (1) dim $\mathbb{C}^n = n$ (2) $\forall a \in \mathbb{C}^n$, dim $\{a\} = 0$ (Jacobian is the identity) (3) Let $f \in \mathbb{C}[x_1, \dots, x_n]$ be $irrd(f \notin \mathbb{C})$. Let X = V(f).

$$0 \le \operatorname{rk}(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_1}) \le 1$$

Notice that there exists $a \in X$ s.t. $\operatorname{rk}(\frac{\partial f}{\partial x_i}) = 1$.

Indeed. If $\operatorname{rk}(\frac{\partial f}{\partial x_i}) = 0, \forall a \in X$, then $\frac{\partial f}{\partial x_i} \in I(X) = (f)$. Hence $f|\frac{\partial f}{\partial x_i}, \forall i$. It follows that $\frac{\partial f}{\partial x_i} = 0, \forall i$ sicne deg $\frac{\partial f}{\partial x_i} < \deg f$ if $\frac{\partial f}{\partial x_i} \neq 0$. Then $f \in \mathbb{C}$ contradiction. Therefore, dim X = n - 1.

(4) Consider the rational space curve $X = V(x_2 - g_2(x_1, \dots, x_n - g_n(x_1)))$. Its Jacobian is

$$\begin{pmatrix} -\frac{\partial g_2}{\partial x_1} & 1 & 0 & \cdots & 0 \\ -\frac{\partial g_2}{\partial x_1} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -\frac{\partial g_n}{\partial x_1} & 0 & 0 & \cdots & 1 \end{pmatrix}$$

of rank n - 1. Hence dim X = n - 1.

(5) Consider the cuspidal cubic curve $X = V(x^2 - y^3) \subset \mathbb{C}^2$. Its Zariski tangent space at $p = (a^3, a^2)$ is

$$T_p X = \{(x, y) \in \mathbb{C}^2 \mid 2a^3(x - a^3) - 3a^4(y - a^2) = 0\}$$
$$= \begin{cases} \mathbb{C}^2, & a = 0, \\ 2a^3(x - a^3) - 3a^4(y - a^2) = 0, & a \neq 0. \end{cases}$$

Then min{dim T_pX } = 1 and dim X = n - 1. X is singular at (0,0)

Lemma 1.5.1. Let R be an integral domain over field \Bbbk and $P \subset R$ a prime ideal. Let $K := \operatorname{Frac}(R)$ and $K' = \operatorname{Frac}(R/P)$. Assume tr. deg $K | \Bbbk < \infty$. Then

$$\operatorname{tr.deg} K|\mathbb{k} \ge \operatorname{tr.deg} K'|\mathbb{k}$$

and the equality holds iff P = (0).

Proof. If P = (0) everything is clear. Assume $P \neq (0)$ and assume by contradiction that

 $\operatorname{tr.deg} K|\mathbb{k} < \operatorname{tr.deg} K'|\mathbb{k}$

By Ch.II, Sec 12, Thm 27 of [6], there exist $\varphi_1, \ldots, \varphi_n \in R/P$ that are algebraically independent over k where $n = \text{tr.} \deg K | \mathbb{k}$. Let $f_1, \ldots, f_n \in R$ s.t. their classes in R/P are $\varphi_1, \ldots, \varphi_n$ respectively. Let $p \in P, p \neq 0$. Then p, f_1, \ldots, f_n are algebraically dependent. Hence there exists a polynomial $\Phi \in \mathbb{k}[y, x_1, \ldots, x_n] \setminus 0$ s.t. $\Phi(p, f_1, \ldots, f_n) = 0$. WLOG, we can assume Φ is irrd (since R is an integral domain). Moreover $\Phi \neq \alpha y, \ \alpha \in \mathbb{k}$ since $p \neq 0$. Hence $\Phi(0, x_1, \ldots, x_n) \neq 0$. And passing to $R/P, \ \Phi(0, \varphi_1, \ldots, \varphi)n) = 0$, contradiction.

Proposition 1.5.2. Let X, Y be two affine varieties with $X \subsetneq Y$. Then $\dim X < \dim Y$.

Proof. Let X = V(P), Y = V(Q) with $P, Q \subset \mathbb{C}[x_1, \ldots, x_n]$ prime. Then $Q \subsetneq P$. We have

 $0 \to \bar{P} \to R_Y \to R_X \to 0$

where $\bar{P} = P/Q$. Then $R_X = R_Y/\bar{P}$.

By Lemma 1.5.1, tr. deg($\mathbb{C}(Y)|\mathbb{C}$) \geq tr. deg($\mathbb{C}(X)$)| \mathbb{C} and the equality holds iff $\overline{P} = (0)$, which is P = Q.

Corollary 1.5.1. Let $X \subset \mathbb{C}^n$ be an affine variety of dimension n-1. Then X is a hypersurface(i.e. $\exists f \in \mathbb{C}[x_1, \ldots, x_n]$ irrd s.t. X = V(f)).

Proof. Let X = V(P) with P prime. Let $f \in P$, $f \neq 0$. Then $X \subset V(f)$. And there exist $f_1, \ldots, f_N \in \mathbb{C}[x_1, \ldots, x_n]$ irrd s.t.

$$f = f_1 \cdots f_N \in P.$$

Since P is prime, there exists $i \in \{1, ..., N\}$ s.t. $f_i \in P$. Hence $X \subset V(f_i)$. And since dim $X = n - 1 = \dim V(f_i)$, by **Proposition 1.5.2**, we have $X = V(f_i)$. **Corollary 1.5.2.** Let $X \subset \mathbb{C}^n$ be an affine variety. Then dim $X = 0 \Leftrightarrow X = \{a\}$ for some $a \in \mathbb{C}^n$

Proof. (\Leftarrow) Clear. (\Rightarrow) If $\exists a \in X$ and $\{a\} \neq X$, then $0 = \dim\{a\} < \dim X = 0$, contradiction.

Remark 1.10. Let $X = V(P) \subset \mathbb{C}^n$ be an affine variety with P prime. And dim X = n - r. In general, there are no $f_1, \ldots, f_r \in \mathbb{C}[x_1, \ldots, x_n]$ s.t. $P = (f_1, \ldots, f_r).$

For example, Let $X \subset \mathbb{C}^3$ be an affine variety with dim X = 1. If P = I(X), the minimal number of generators of P is 3. Consider the map

$$\varphi: \mathbb{C} \to \mathbb{C}^3$$
$$a \mapsto (a^3, a^4, a^5)$$

Let $X := \{(a^3, a^4, a^5) \mid a \in \mathbb{C}\} \subset \mathbb{C}^3$. Then clearly we have that $X \subset V(I)$ where $I = (xz - y^2, x^3 - yz, x^2y - z^2)$. Conversely, let $(x, y, z) \in V(I)$, set $a := \frac{y}{x}$ if $x \neq 0$ (if x = 0 then y = z = 0). Then we have

$$a^{3} = \frac{y^{3}}{x^{3}} = \frac{xzy}{x^{3}} = x,$$

$$a^{4} = xa = y,$$

$$a^{3} = ya = z.$$

Therefore, X = V(I).

Moreover, I is a prime ideal and it cannot be generated by 2 polynomials. Claim. \sqrt{I} is prime.

Indeed. By Theorem 1.2.1, $\sqrt{I} = I(X)$. If $\exists f_1, f_2 \in \mathbb{C}[x, y, z]$ s.t. $f_1 f_2 \in \sqrt{I}$ but $f_1, f_2 \notin \sqrt{I}$. Then $f_1 \circ \varphi, f_2 \circ \varphi \in \mathbb{C}[t] \setminus 0$ but $(f_1 f_2) \circ \varphi = (f_1 \circ \varphi)(f_2 \circ \varphi) = 0$, contradiction. \Box

Claim. \sqrt{I} cannot be generated by 2 polynomials.

Indeed. Let $f \in \sqrt{I}$. It can be written as

3i

$$f = \sum c_{ijk} x^i y^j z^k$$

s.t. $\sum c_{ijk}t^{3i+4j+5k} = 0, \ \forall t. \text{ i.e.}, \ \forall m \ge 0, \ \forall (i,j,k) \text{ s.t. } 3i+4j+5k = m,$

$$\sum_{\substack{(i,j,k)\\+4j+5k=m}} c_{ijk} = 0, \ \forall m \ge 0.$$

(1) m = 0. $c_{000} = 0$. (2) m = 1, 2. None. (3) m = 3. $c_{100} = 0$. (4) m = 4. $c_{010} = 0$. (5) m = 5. $c_{001} = 0$. (6) m = 6. $c_{200} = 0$. (7) m = 7. $c_{110} = 0$. (8) m = 8. $c_{101} + c_{020} = 0$. We get $\mathbb{C}(xz - y^2)$.

(9) m = 9. $c_{300} + c_{011} = 0$. We get $\mathbb{C}(x^3 - yz)$. (10) m = 10. $c_{210} + c_{002} = 0$. We get $\mathbb{C}(x^2y - z^2)$. In conclusion, f has the form

$$f = \alpha(xz - y^2) + \beta(x^3 - yz) + \gamma(x^2y - z^2) + \tilde{f}, \ \alpha, \beta, \gamma \in \mathbb{C}.$$

If $\sqrt{I} = (f, g)$, then

$$g = \alpha'(xz - y^2) + \beta'(x^3 - yz) + \gamma'(x^2y - z^2) + \tilde{g}.$$

and we can express $xz - y^2$, $x^3 - yz$, $x^2y - z^2$ as a linear combination of f, g. But they are linearly independent. Contradiction. \Box

To prove **Proposition 1.5.1**, we need the following lemmas.

Lemma 1.5.2. Let $U_1, U_2 \subset X$ be nonempty Zariski open subsets. Then $U_1 \cap U_2 \neq \emptyset$.

Proof. Let X = V(P) with P prime. We can write the open sets as

$$U_i = X \cap (\mathbb{C}^n \setminus V(I_i)), \ i = 1, 2.$$

Nonempty implies that there exists $a_i \in X$ and $f_i \in I_i$ s.t. $f_i(a_i) \neq 0$, and hence $f_i \notin P$ for i = 1, 2. If $U_1 \cap U_2 = \emptyset$, then

$$X \cap (\mathbb{C}^n \setminus V(I_1)) \cap (\mathbb{C}^n \setminus V(I_2)) = X \cap (\mathbb{C}^n \setminus (V(I_1) \cup V(I_2))) = X \cap (\mathbb{C}^n \setminus V(I_1I_2)) = \emptyset.$$

It implies that $X \subset V(I_1I_2)$ and then $f_1f_2 \in P$, Contradiction. \Box

Definition 1.5.2. Let S be a ring and $R \subset S$ be a subring. A map $R \to S$ is said to be a **derivation of** R (with values in S) if

(1) $D(x+y) = D(x) + D(y), \forall x, y \in R,$ (2) $D(xy) = xD(y) + yD(x), \forall x, y \in R.$

Definition 1.5.3. Let S be a ring and $R \subset S$ be a subring. Let $R' \subset R$ be a subring. A derivation $D: R \to S$ is called a R'-derivation if D(x) = 0, $\forall x \in R'$. We denote $\mathcal{D}_{R/R'}(S)$ the set of all R'-derivation of R. If S = R, we write $\mathcal{D}_{R/R'} = \mathcal{D}_{R/R'}(S)$

- Remark 1.11. (1) $\mathcal{D}_{R/R'}(S)$ is an S-module. In particular, if S is a field, then $\mathcal{D}_{R/R'}(S)$ is an S-vector space.
- (2) Assume that R is an integral domain. Let $K = \operatorname{Frac}(R)$. Then any derivation D of R with values in K can be extended uniquely to a derivation of K. Moreover, we have $\mathcal{D}_R(K) \cong \mathcal{D}_K(K)$.

Indeed. Let $x, y \in R$ and $y \neq 0$. Define $D(\frac{x}{y}) := \frac{yD(x)-xD(y)}{y^2}$. Observe that if $\frac{x}{y} = \frac{x'}{y'}$, by definition we have $D(\frac{x}{y}) = D(\frac{x'}{y'})$. It is easy to see that the map $D: K \to K$ is a derivation. Uniqueness is immediately.

Example 1.5.2. (1) Let R be a ring and D be a derivation on R. Let $A = R[x_1, \ldots, x_n]$. For any

$$f = \sum c_{i_1,\dots,i_n} x_1^{i_1} \cdots x_n^{i_n},$$

define

$$f^D = \sum D(c_{i_1,\dots,i_n}) x_1^{i_1} \cdots x_n^{i_n}.$$

It gives a derivation of A.

(2) Let R' be a ring and $R = R'[x_1, \ldots, x_n]$. Define

$$D_i = \frac{\partial}{\partial x_i} : R \to R.$$

with

$$D_i(c) = 0, \ \forall c \in R',$$
$$D_i(\sum c_{k_1,\dots,k_n} x_1^{k_1} \cdots x_n^{k_n}) = \sum c_{k_1,\dots,k_n} k_i x_1^{k_1} \cdots x_n^{k_i-1}) \cdots x_n^{k_n}.$$

 D_i is a R'-derivation.

 D_i is uniquely determined by (1), (2) in **Definition 1.5.2** and $D_i(c) = 0$, $\forall c \in R'$, $D_i(x_j) = \delta_{ij}$.

(3) If $R' = \mathbb{k}$ is a field and $K = \mathbb{k}(x_1, \dots, x_n)$. Then $\dim_K \mathcal{D}_{K|\mathbb{k}} = n$ and D_1, \dots, D_n form a basis for $\mathcal{D}_{K|\mathbb{k}}$.

Indeed. Let $D \in \mathcal{D}_{K|\Bbbk}$, we consider $D' := \sum_{i=1}^{n} D(x_i) D_i \in \mathcal{D}_{K|\Bbbk}$. It is easy to see that D = D'. Hence $\mathcal{D}_{K|\Bbbk} = \operatorname{span}(D_1, \ldots, D_n)$. It remains to show that D_1, \ldots, D_n are linearly independent. Let $\lambda_i \in K$ be such that

$$\sum \lambda_i D_i = 0.$$

Then

$$\lambda_j = (\sum \lambda_i D_i)(x_j) = 0.$$

In fact, we have the following theorems.

Theorem 1.5.1 ([6] Ch.2, Sec.17, Thm41). Let K be a field, char K = 0. Let $F = K(x_1, \ldots, x_n)$ by any f.g. extension of K. Then

$$\operatorname{tr.deg}(F|K) = \dim_F(\mathcal{D}_{F|K}).$$

Corollary 1.5.3 ([6] Ch.2, Sec.17, Cor2'). Let K be a field. Let F|K by a separable algebraic extension. Then any derivation of K can be extended to a derivation of F in a unique way

Example 1.5.3. Consider the polynomial ring $K[x_1, \ldots, x_n]$ and its field of fraction $F = K(x_1, \ldots, x_n)$. Then $\mathcal{D}_{F|K}(F)$ as vector space over F hase basis D_1, \ldots, D_n .

Lemma 1.5.3. There exists a nonempty Zariski open subset $\tilde{U} \subset X$ s.t. $\forall a \in \tilde{U}, \dim T_a X = \text{tr.} \deg(\mathbb{C}(X)|\mathbb{C}).$

Proof. Let $\bar{x}_1, \ldots, \bar{x}_n$ be the classes of x_1, \ldots, x_n in $\mathbb{C}(X)$ Then $\mathbb{C}(X) = \mathbb{C}(\bar{x}_1, \ldots, \bar{x}_n)$ and it is f.g. over \mathbb{C} . Then by **Theorem 1.5.1**,

tr. deg($\mathbb{C}(X)|\mathbb{C}$) = dim_{$\mathbb{C}(X)$} $\mathcal{D}_{R_X|\mathbb{C}}(\mathbb{C}(X))$ = dim_{$\mathbb{C}(X)$} $\mathcal{D}_{\mathbb{C}[x_1,\dots,x_n]/(P+\mathbb{C})}(\mathbb{C}(X))$

where

$$\mathcal{D}_{\mathbb{C}[x_1,\dots,x_n]/(P+\mathbb{C})}(\mathbb{C}(X)) = \{(\lambda_1,\dots,\lambda_n) \in \mathbb{C}(X) \mid \sum_{i=1}^n \lambda_i D_i(f) = 0, \ \forall f \in P\} \\ = \{(\lambda_1,\dots,\lambda_n) \in \mathbb{C}(X) \mid \sum_{i=1}^n \lambda_i \frac{\partial}{\partial x_i}(f) = 0, \ \forall f \in P\}$$

And then the dimension of this set is $n - \operatorname{rk}_{\mathbb{C}(X)}(\frac{\partial f_j}{\partial x_i})$.

Claim. There exists a nonempty Zariski open subset $\tilde{U} \subset X$ s.t.

$$\operatorname{rk}_{\mathbb{C}(X)}(\frac{\partial f_j}{\partial x_i}) = \operatorname{rk}_{\mathbb{C}}(\frac{\partial f_j}{\partial x_i}(a)), \ \forall a \in \tilde{U}.$$

 $r := \operatorname{rk}_{\mathbb{C}(X)}(\frac{\partial f_j}{\partial x_i})$

Indeed. By linear algebra we know that there exist $A \in \operatorname{GL}_m(\mathbb{C}(X))$ and $B \in \operatorname{GL}_n(\mathbb{C}(X))$ s.t.

$$A(\frac{\partial f_j}{\partial x_i})B = \begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix}$$

But we can write $A = \frac{1}{\alpha}A_0$, $B = \frac{1}{\beta}B_0$ for some $\alpha, \beta \in R_X$ and $A_0 \in Mat_m(R_X)$ and $B_0 \in Mat_n(R_X)$.

Let $U := \{a \in X \mid \alpha(a)\beta(a) \det(A_0(a)) \det(B_0a) \neq 0\}$, which is a nonempty Zariski open set. And for any $a \in \tilde{U}$,

`

$$\frac{1}{\alpha(a)}A_0(a)(\frac{\partial f_j}{\partial x_i}(a))\frac{1}{\beta(a)}B_0(a) = \begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix}$$

Hence $r = \operatorname{rk}_{\mathbb{C}}(\frac{\partial f_j}{\partial x_i}(a)), \ \forall a \in \tilde{U}.$

fine

Now we give the proof of **Proposition** 1.5.1.

Proof. We have seen that there exists a nonempty Zariski open subset $U \subset X$ s.t. $\forall a \in U$, dim $T_a X = \min\{\dim T_b X \mid b \in X\}$. Then by **Lemma 1.5.2**, $U \cap \tilde{U} \neq \emptyset$, where \tilde{U} is as in the **Lemma 1.5.3**.

1.6. Structure of affine varieties at smooth points.

Theorem 1.6.1 ([5], Thm 1.16, Cor 1.20).

(1) Let $f_1, \ldots, f_r \in \mathbb{C}[x_1, \ldots, x_n]$ without constant terms $(f_j(0) = 0, j = 1, \ldots, r)$ and s.t. the linear parts are linearly independent $(\frac{\partial f_j}{\partial x_1}(0), \ldots, \frac{\partial f_j}{\partial x_n}(0), j = 1, \ldots, r)$, are linearly independent.) De-

$$P := \{g \in \mathbb{C}[x_1, \dots, x_n] \mid \frac{\sum_{j=1}^r h_j f_j}{K} = g, \ h_j, K \in \mathbb{C}[x_1, \dots, x_n], \ K(0) \neq 0\}.$$

Then P is a prime ideal and X := V(P) is a variety of dimension n - r and $0 \in X$ is a smooth point.

Moreover, $V(f_1, \ldots, f_r) = X \cup Y$ where Y is a closed algebraic set $s, t, 0 \notin Y$.

(2) Conversely, if $X = V(P) \subset \mathbb{C}^n$ is an affine variety of dimension n-r and $a \in X$ is smooth. Then there exist $f_1, \ldots, f_r \in P$ s.t.

$$\operatorname{rk}(\frac{\partial f_j}{\partial x_i}(a)) = r$$

and

$$P = \{g \in \mathbb{C}[x_1, \dots, x_n] \mid \frac{\sum_{j=1}^r h_j f_j}{K} = g, \ h_j, K \in \mathbb{C}[x_1, \dots, x_n], \ K(0) \neq 0\}$$

Example 1.6.1. Again consider $X = \{(a^3, a^4, a^5) \mid a \in \mathbb{C}\} = V(P) \subset \mathbb{C}^3$ where $P = (xz - y^2, x^3 - yz, x^2y - z^2)$. And it is easy to see that $(1, 1, 1) \in X$ is a smooth point. One can check that it satisfies (2) in **Theorem 1.6.1**.

1.7. The local ring of a point. Let $R = \mathbb{C}[x_1, \ldots, x_n]$, $P = (x_1 - a_1, \ldots, x_n - a_n)$ where $a = (a_1, \ldots, a_n) \in \mathbb{C}^n$. Here P is a maximal ideal. $\mathcal{O}_{\mathbb{C}^n,a} = R_P$ is called the **local ring** a whose elements are rational functions defined in some neighborhood of a.

Remark 1.12. If $g \in \mathbb{C}[x_1, \ldots, x_n]$ is s.t. $g(a) \neq 0$, then we can consider $\tilde{g}(y_1, \ldots, y_n) := g(a_1 + y_1, \ldots, a_n + y_n) \in \mathbb{C}[y_1, \ldots, y_n]$ and then $\tilde{g}(0) \neq 0$. Then it as a inverse in the ring of formal power series

$$\frac{1}{\tilde{g}(y)} = \sum_{i_1,\dots,i_n=0}^{\infty} c_{i_1,\dots,i_n} y_1^{i_1} \cdots y_n^{i_n} \in \mathbb{C}[[y_1,\dots,y_n]].$$

For example,

$$\frac{1}{1 - \sum c_i y_i} = 1 + \sum_{k=1}^{\infty} \left(\sum_{i=1}^n c_i y_i \right)^k$$

Hence we have $\mathcal{O}_{\mathbb{C}^n,a} \subset \mathbb{C}[[y_1,\ldots,y_n]]$. Then in a neighborhood of the smooth point a, it is also a complex manifold in the Euclidean topology.

Now we consider the case of affine variety. Let $X = V(P) \in \mathbb{C}^n$ be an affine variety, $a \in X$. And let $\overline{M}_a := (\overline{x}_1 - a_1, \dots, \overline{x}_n - a_n)$. We can also define $\mathcal{O}_{X,a} := (R_X)_{\overline{M}_a}$ the local ring of $a \in X$.

Remark 1.13. Note that $\operatorname{Frac}(\mathcal{O}_{X,a}) = \mathbb{C}(X)$.

Proposition 1.7.1. $R_X = \bigcap_{a \in X} \mathcal{O}_{X,a}$ in $\mathbb{C}(X)$.

Proof. (C) We have the map $f \mapsto \frac{f}{1} \in \mathcal{O}_{X,a}, \forall a \in X$.

 (\supset) Let $u \in \bigcap_{a \in X} \mathcal{O}_{X,a}$. Let $I := \{h \in \mathbb{C}[x_1, \ldots, x_n] \mid \bar{h}u \in R_X\}$ where \bar{h} is the class of h in R_X . Note that I is an ideal and $P \in I$.

For any $a \in X$, since $u \in \bigcap_{a \in X} \mathcal{O}_{X,a}$ can be expressed as

$$u = \frac{f}{g}, g(a) \neq 0.$$

Hence $g \in I$. But $g(a) \neq 0$, if follows that $a \notin V(I)$. And since $P \subset I$, we have $V(I) \subset X$ and $V(I) = \emptyset$. By **Theorem 1.2.1**, $1 \in \sqrt{I}$. Therefore, $1 \in I$ and $u = 1 \cdot u \in R_X$

1.8. **Power series expansions.** In this section we introduce the local parameters at a (smooth) point.

Let X = V(P) be an affine variety with $P = (f_1, \ldots, f_m) \subset \mathbb{C}[x_1, \ldots, x_n]$ prime. For $a \in X$, we denote $\overline{M}_a := (\overline{x}_1 - a_1, \ldots, \overline{x}_n - a_n)$ the maximal ideal of a. In the local ring $\mathcal{O}_{X,a} = (R_X)_{\overline{M}_a}$, define $\mathfrak{m}_a := \varphi(\overline{M}_a \cdot \mathcal{O}_{X,a})$ the maximal ideal of $\mathcal{O}_{X,a}$, where $\varphi : R_X \to \mathcal{O}_{X,a}$ with $\varphi(\overline{f}) = \frac{\overline{f}}{1}$.

Let $D \in Der_{R_X,a}$. Then D can be extended to the $Der_{\mathcal{O}_{X,a},a}$ in a unique way by setting $D(\frac{\bar{f}}{\bar{g}}) := \frac{\bar{g}(a)D(\bar{f}) - \bar{f}(a)D(\bar{g})}{\bar{g}(a)^2}$. Note that $D(\mathfrak{m}_a^2) = 0$. D induces a \mathbb{C} -linear map $d \in (\mathfrak{m}_a/\mathfrak{m}_a^2)^* : \mathfrak{m}_a/\mathfrak{m}_a^2 \to \mathbb{C}$.

Theorem 1.8.1. The map

$$Der_{R_X,a} \to (\mathfrak{m}_a/\mathfrak{m}_a^2)^*$$
$$D \mapsto d$$

is a \mathbb{C} -linear isomorphism.

Proof. Linearity is immediately by construction.

(Inj). Let the image of D be 0, then $D|_{\mathfrak{m}_a} = 0$. D induces a \mathbb{C} -linear map $\mathcal{O}_{X,a}/\mathfrak{m}_a \cong \mathbb{C} \to \mathbb{C}$. By Leibniz, D = 0.

(Surj). Let $\delta \in (\mathfrak{m}_a/\mathfrak{m}_a^2)^*$. Define $D: R_X \to \mathbb{C}$ by $D(\bar{f}) := \delta(\varphi(\bar{f} - \bar{f}(a)))$. "standard calculation"

Hence $D \in Der_{R_X,a}$ and its image is δ .

Remark 1.14. (1) $\forall a \in X$, $\dim_{\mathbb{C}} \mathfrak{m}_a/\mathfrak{m}_a^2 = \dim_{\mathbb{C}} T_a X < \infty$. (2) From Exer.6, Assignment 1,

$$Der_{R_X,a} \to \mathbb{C}^n$$

 $D \mapsto (D(\bar{x}_1), \dots, D(\bar{x}_n))$

is injective and C-linear. Moreover,

$$D(\bar{f}) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a) D(\bar{x}_i).$$

Now identify $D \in Der_{R_X,a}$ with its image $d \in (\mathfrak{m}_a/\mathfrak{m}_a^2)^*$. Let $\overline{u} \in \mathfrak{m}_a/\mathfrak{m}_a^2$. Then

$$d(\bar{u}) = D(u) = \sum_{i=1}^{n} \frac{\partial u}{\partial x_i}(a) D(\bar{x}_i).$$

where u is any representative of \bar{u} in \mathfrak{m}_a .

Definition 1.8.1. Let $r = \dim X$. and Let $a \in X$ be a smooth point. $u_1, \ldots, u_r \in \mathcal{O}_{X,a}$ are called **local parameters** at a if $u_1, \ldots, u_r \in \mathfrak{m}_a$ and their classes $\bar{u}_1, \ldots, \bar{u}_r \in \mathfrak{m}_a/\mathfrak{m}_a^2$ form a basis of $\mathfrak{m}_a/\mathfrak{m}_a^2$. And $\mathfrak{m}_a/\mathfrak{m}_a^2$ is called the **cotangent space** of X at a.

ZIWEI WEI

Remark 1.15. If $u_1, \ldots, u_r \in \mathcal{O}_{X,a}$ are local parameters at a, then $\operatorname{rk}(\frac{\partial u_j}{\partial x_i}(a)) = r$.

Example 1.8.1. Let $X = V(x^2 + y^2 - 1) \subset \mathbb{C}^2$, a = (0, 1). Then $T_a X = \{(x, y) \mid y = 1\}$. $x \in \mathfrak{m}_a$ is a local parameter since $dx|_{\mathfrak{m}_a/\mathfrak{m}_a^2}$. $y - 1 \in \mathfrak{m}_a$ is not a local parameter since $D(\bar{y}) = 0$, $\forall D \in Der_{R_X,a}$ and $\frac{\partial y - 1}{\partial x}(a)D(\bar{x}) + \frac{\partial y - 1}{\partial y}(a)D(\bar{y}) = 0$.

Lemma 1.8.1 (Nakayama). Let R be a ring and M be a f.g. R-module. Let $I \subset R$ be an ideal. Then $IM = M \Leftrightarrow \exists x \in 1 + I \text{ s.t. } xM = 0$.

In particular, if $\forall x \in 1 + I$ is invertible(e.g. I is maximal), then $IM = M \Leftrightarrow M = 0$.

Proof. (\Leftarrow). Clear.

(⇒). Let $v_1, \ldots, v_n \in M$ be generators of M. IM = M implies that $\exists a_{ij} \in I, 1 \leq i, j \leq n$ s.t. $-v_i = \sum_j a_{ij}v_j$. Then we have $(A + I_n)v = 0$, where $A = (a_{ij}), I_n$ is the identity matrix and $v = (v_1, \ldots, v_n)^T$. Then by multiplying the classical adjoint matrix of A + I (classical adjoint matrix S^* of matrix S is s.t. $SS^* = (\det S)I$ with I the identity). $(A + I_n)^*(A + I_n)v = 0$. But $(A + I_n)^*(A + I_n) = \det(A + I_n)I_n$. And $\det(A + I_n) = 1 + d$ for some $d \in I$. Hence $(1 + d)v_i = 0, \forall i = 1, \ldots, n$. Then (1 + d)M = 0

Corollary 1.8.1. Let R as before. Let $I \subset R$ be an ideal s.t. every element in 1+I is invertible. Let M be a f.g. R-module and $M' \subset M$ be a submodule. Then

$$M = IM \mod M' \iff M' = M.$$

In particular, $v_1, \ldots, v_n \in M$ generate $M \iff$ their classes $\bar{v}_1, \ldots, \bar{v}_n \in M/IM$ are generators.

Proof. Applying Lemma 1.8.1 to M/M'. Note that $M = IM \mod M' \iff IM/M' = M//M'$. By Lemma 1.8.1, it is equivalent to $\exists x \in 1 + I$ s.t. xM/M' = 0. But x is invertible. Therefore M/M' = 0.

For the last statement, let $M' := \operatorname{span}(v_1, \ldots, v_n)$.

Remark 1.16. In particular, if $u_1, \ldots, u_r \in \mathfrak{m}_a$ are local parameters, then $\mathfrak{m}_a = (u_1, \ldots, u_r)$.

Let $u_1, \ldots, u_r \in \mathcal{O}_{X,a}$ be local parameters, where $a \in X$ is a smooth point. For any $v \in \mathcal{O}_{X,a}$, define $v_{(1)} := v - v(a) \in \mathfrak{m}_a$. Then $\exists \lambda_1, \ldots, \lambda_r \in \mathbb{C}$ s.t.

$$v_{(1)} - \lambda_1 u_1 - \dots - \lambda_r u_r \in \mathfrak{m}_a^2.$$

Let $v_{(2)} := v_{(1)} - \sum \lambda_i u_i \in \mathfrak{m}_a^2$. We can write $v_{(2)} = \sum w_k x_k$ for some $w_k, x_k \in \mathfrak{m}_a$

Again $\exists \mu_{ki}, \nu_{ki} \in \mathbb{C}$ s.t.

$$w_k - \sum_i \mu_{ki} u_i, x_k - \sum_i \nu_{ki} - u_i \in \mathfrak{m}_a^2.$$

Hence

$$v_{(2)} = \sum_{k} \left(\sum_{i} \mu_{ki} u_{i} + \mathfrak{m}_{a}^{2} \right) \left(\sum_{i} \nu_{ki} u_{i} + \mathfrak{m}_{a}^{2} \right)$$
$$= \sum_{k,l} \gamma_{k,l} u_{k} u_{l} + \mathfrak{m}_{a}^{3}.$$

By repeating this procedure, we can construct homogeneous polynomial $v_{(l)} \in \mathbb{C}[t_1, \ldots, t_r]$ of degree l for any $l \in \mathbb{N}$ s.t.

$$v = \sum_{l=0}^{k} v_{(l)}(u_1, \dots, u_r) + \mathfrak{m}_a^{k+1}$$

Definition 1.8.2. The formal power series ring in $t = (t_1, \ldots, t_r)$ is the ring $\mathbb{C}[[t]] = \mathbb{C}[[t_1, \ldots, t_r]]$ whose elements are infinite sum of the form

$$\Phi = F_1 + F_2 + \cdots$$

where $F_i \in \mathbb{C}[t_1, \ldots, t_r]$ is homogeneous of degree *i*.

And the operations are the following. Let $\Psi = \sum H_i$.

$$\Phi + \Psi = \sum_{i} F_{i} + H_{i}$$
$$\Phi \cdot \Psi = \sum_{i \ge 0} (\sum_{j+k=i} H_{j}F_{k})$$

Remark 1.17. (1) We can replace \mathbb{C} by any other field. (2) $\mathbb{C} \subset \mathbb{C}[[t]].$

(3) $\mathbb{C}[[t]]$ is an integral domain.

Definition 1.8.3. Let $u \in \mathcal{O}_{X,a}$ with a smooth point. Let u_1, \ldots, u_r be local parameters at a. A Taylor series for u is $\Phi = \sum F_i \in \mathbb{C}[[t_1, \ldots, t_r]]$ s.t.

$$u - \sum_{i=0}^{k} F_i(u_1, \dots, u_r) \in \mathfrak{m}_a^{k+1}, \ \forall k.$$

Example 1.8.2.

(1) $X = \mathbb{C}, a = 0, \mathfrak{m}_a = (x)$. Then $\forall \frac{f}{g} \in \mathcal{O}_{X,a}$ has a unique Taylor series $\sum_{i \ge 0} \lambda_i x^i$ with $\frac{f}{g} - \sum_{i=0}^k \lambda_i x^i \in (x^{k+1})$. (2) $\frac{1}{1-x} = \sum_{i \ge 0} x^i$.

Theorem 1.8.2 (Weierstrass Preparation Theorem, [7], p139(simplified version)). Let $\Phi = \sum_{i=1}^{n} a_i x_i + higher order terms.$ Assume that $a_1 \neq 0$. Then for any $\Psi \in \mathbb{C}[[x_1, \ldots, x_n]]$, there are unique $A, B \in \mathbb{C}[[x_1, \ldots, x_n]]$ s.t. $\Psi = A\Phi + B.$

Corollary 1.8.2. $\mathbb{C}[[x_1, \ldots, x_n]]/(\Phi) = \mathbb{C}[[x_2, \ldots, x_n]]$

Theorem 1.8.3. $\forall u \in \mathcal{O}_{X,a}$ with a smooth point. Let u_1, \ldots, u_r be local parameters at a. There exists a unique Taylor series of u. Consequently, we have a injective morphism

$$\tau: \mathcal{O}_{X,a} \to \mathbb{C}[[t_1, \dots, t_r]]$$
$$u \mapsto \tau(u)$$

where $\tau(u)$ is the Taylor series of u.

Proof. It is sufficient to prove the following claim.

Claim. If $F_k \in \mathbb{C}[t_1, \ldots, t_r]$ is homogeneous of degree k and $F_k(u_1, \ldots, u_r) \in$ \mathfrak{m}_{a}^{k+1} , then $F_{k}=0$.

Indeed. We prove the claim in two steps.

Step 1. Consider the case that $X = \mathbb{C}^n$, r = n, $u_1 = x_1 - a_1, \ldots, u_n = x_n - a_n$ $a_n, \mathfrak{m}_a = (x_1 - a_1, \dots, x_n - a_n).$ Then $\mathfrak{m}_a^k = \{\prod_{i=1}^n (x_i - a_i)^{m_i} \mid \sum_{i=1}^n m_i = k\}.$ In this case, if $F_k(x_1 - a_1, \ldots, x_n - a_n) \in \mathfrak{m}_a^{k+1}$, $F_k = 0$.

Step 2. Now we consider the general case that X = V(P) with P prime. Assume, WLOG, that a = 0. We have

 $\frac{f}{\bar{a}} = 0$ iff

Hence the map $\mathcal{O}_{\mathbb{C}^n,0}/P\mathcal{O}_{\mathbb{C}^n,0} \to \mathcal{O}_{X,0}$ is an isomorphism. We have the following commutative diagram.

It easy to see that $\mathcal{O}_{\mathbb{C}^n,0}/P\mathcal{O}_{\mathbb{C}^n,0} \to \mathbb{C}[[x_1,\ldots,x_n]]/P\mathbb{C}[[x_1,\ldots,x_n]]$ is injective. It remains to show that $\mathbb{C}[[x_1, \ldots, x_n]]/P\mathbb{C}[[x_1, \ldots, x_n]] \cong \mathbb{C}[[y_1, \ldots, y_r]].$

By **Theorem 1.6.1**, there exist $f_1, \ldots, f_{n-r} \in \mathbb{C}[x_1, \ldots, x_n]$ s.t. $P\mathcal{O}_{\mathbb{C}^n, 0} =$

 $(\frac{f_1}{1}, \dots, \frac{f_{n-r}}{1})$ and $P\mathbb{C}[[x_1, \dots, x_n]] = (f_1, \dots, f_{n-r})\mathbb{C}[[x_1, \dots, x_n]].$ If $f_i = \sum_{j=1}^n a_{ij}x_j + \text{h.o.t, then } \operatorname{rk}(a_{ij})_{\substack{i=1,\dots,n-r\\j=1,\dots,n}} = \operatorname{rk}(\frac{\partial f_i}{\partial x_j}) = n-r.$ And up to a linear change of coordinates we can assume that $rk(a_{ij})_{1 \le i,j \le n-r} = n-r$. By Theorem 1.8.2,

$$\mathbb{C}[[x_1,\ldots,x_n]]/P\mathbb{C}[[x_1,\ldots,x_n]] \cong \mathbb{C}[[x_{n-r+1},\ldots,x_n]].$$

Consider $u_1, \ldots, u_r \in \mathbb{C}[[y_1, \ldots, y_r]]$, then $u_i = \sum_{j=1}^r b_{ij} y_j$ with $b_{ij} \in \mathbb{C}[[y_1, \ldots, y_r]]$ $\mathbb{C}[[y_1,\ldots,y_r]]$. Set $B := (b_{ij}) \in \operatorname{Mat}_r(\mathbb{C}[[y_1,\ldots,y_r]])$. det $B(0) \neq 0$ since u_1, \ldots, u_r form a basis of $\mathfrak{m}_0/\mathfrak{m}_0^2$ and also y_1, \ldots, y_r form a basis of $\mathfrak{m}_0/\mathfrak{m}_0^2$. There exists $B^{-1} = \det(B)^{-1} \tilde{B}^*$. Hence $\mathbb{C}[[u_1, \ldots, u_r]] \cong \mathbb{C}[[y_1, \ldots, y_r]])$. The claim follows from Step 1.

Now we have the morphism

$$\tau: \mathcal{O}_{X,a} \to \mathbb{C}[[t_1, \dots, t_r]]$$
$$u \mapsto \tau(u).$$

Let $u \in \mathcal{O}_{X,a}$ be such that $\tau(u) = 0$. Then $u \in \mathfrak{m}_a^k$, $\forall k$. Hence $u \in \bigcap_{k \ge 0} \mathfrak{m}_a^k$. But $\mathfrak{m}_a(\cap_{k>0}\mathfrak{m}_a^k) = \cap_{k>0}\mathfrak{m}_a^k$. Then by Lemma 1.8.1, $\cap_{k>0}\mathfrak{m}_a^k = 0$, hence u = 0. Therefore, the morphism is injective. \square

Remark 1.18. (Formal Implicit Function theorem) Let $\Phi = \sum_{i=1}^{n} a_i x_i +$ higher order terms $\in \mathbb{C}[[x_1, \ldots, x_n]]$ s.t. $a_1 \neq 0$. Then by **Theorem 1.8.2**, there exist $A \in \mathbb{C}[[x_1, \ldots, x_n]]$ and $B \in \mathbb{C}[[x_2, \ldots, x_n]]$ s.t. $x_1 = A\Phi + B$ Note that $A(0) \neq 0$, then $\Phi = (x_1 - B)A^{-1}$.

1.9. Analytic structure of smooth point.

Definition 1.9.1 ([2]). A complex manifold of complex dimension n is a Hausdorff and 2nd countable topological space M together with a holomorphic atlas $\mathcal{A} = \{(U_{\alpha}, \varphi_{\alpha}) \mid \alpha \in A\}$. i.e. $M = \bigcup_{\alpha} U_{\alpha}$ with $U_{\alpha} \subset M$ open and $\varphi_{\alpha} \circ \varphi_{\beta}^{-1} : \varphi_{\beta}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\alpha}(U_{\alpha} \cap U_{\beta})$ is holomorphic. And a homeomorphism $\phi U_{\alpha} \to V_{\alpha}$ for some $V_{\alpha} \subset \mathbb{C}^{n}$ open.

Remark 1.19. By $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}$ holomorphic we mean that it is C^0 and satisfies the Cauchy-Riemann equations, which is

Theorem 1.9.1. If $X \subset \mathbb{C}^n$ is an affine variety of dimension r. Let $U \subset X$ be the set of smooth points. Then U is a complex manifold of dimension r.

1.10. $\mathcal{O}_{X,a}$ is a UFD. ²

Proposition 1.10.1 ([4], Appendix 7). Suppose R is a Noetherian ring with maximal ideal M. Let $\hat{R} \supset R$ with maximal ideal \hat{M} be a local ring, which is a UFD. If the following conditions are satisfied:

- (1) $M\hat{R} = \hat{R}$,
- (2) $(M^n \hat{R}) \cap R = M^n, \forall n > 0,$
- (3) $\forall x \in \hat{R} \text{ and } \forall n > 0, \exists x_n \in R \text{ s.t. } x x_n \in M^n \hat{R} = \hat{M}^n,$

then R is a UFD.

Theorem 1.10.1. Let X be an affine variety of dimension r and $a \in X$ be a smooth point. Then $\mathcal{O}_{X,a}$ is a UFD.

Proof. (Sketch). We have seen that $\mathcal{O}_{X,a} \subset \mathbb{C}[[t_1, \ldots, t_r]]$.

We use the fact that $\mathbb{C}[[t_1, \ldots, t_r]]$ is a UFD.(see details in [7]). Denote $\hat{\mathcal{O}}_{X,a} := \mathbb{C}[[t_1, \ldots, t_r]]$ with maximal ideal $\hat{\mathfrak{m}}_a$.

We prove by check the conditions in **Proposition** 1.10.1.

(1) (\subset) Clear.

 (\supset) If $u_1, \ldots, u_r \in \mathcal{O}_{X,a}$ are local parameters, then $\tau(u_i) = t_i, \forall i = 1, \ldots, r$. Let $\Phi \in \hat{\mathfrak{m}}_a$, then

$$\Phi = \sum_{i=1}^{r} \varphi_i t_i, \ \varphi_i \in \hat{\mathcal{O}}_{X,a}.$$

Then $\Phi = \sum_{i=1}^{r} \varphi_i \tau(u_i) \in \mathfrak{m}_a \hat{\mathcal{O}}_{X,a}$

- (2) (\supset) Clear. (\subset) Let $\Phi \in (\mathfrak{m}_a^n \hat{\mathcal{O}}_{X,a}) \cap \mathcal{O}_{X,a} = \hat{\mathfrak{m}}_a^n \mathcal{O}_{X,a}$. Since $\Phi \in R, \Phi = \tau(u)$. Since $\Phi \in \hat{\mathfrak{m}}_a^n, u \in \mathcal{O}_{X,a}^n$.
- (3) Clear.

²This part is a bit of mess. I will try to rewrite it in a more readable way.

ZIWEI WEI

Remark 1.20. In general, R_X is not a UFD. (e.g. $X = V(x^2 + y^2 - 1))$

Corollary 1.10.1 (Geometric interpretation of UFD). Let X = V(P) with $P \in \mathbb{C}[x_1, \ldots, x_n]$ prime. Let $r = \dim X$ and let $a \in X$ be a smooth point. If $f \in \mathbb{C}[x_1, \ldots, x_n]$ is such that

$$\overline{f}_{1} \in \mathcal{O}_{X,a}$$
 is irreducible,

then

$$P' := \{ g \in \mathbb{C}[x_1, \dots, x_n] \mid kg \in P + (f), \ k\mathbb{C}[x_1, \dots, x_n], \ k(a) \neq 0 \in \}$$

is a prime ideal and $X' := V(P') \subset X$ is an affine variety of dimension r-1. Such X' is called a subvariety of X of codimension 1. Moreover, every subvariety of X of codimension 1 is of this form. In this situation, $\frac{\overline{f}}{1} \in \mathcal{O}_{X,a}$ is called a local equation of X' at a.

Proof. Let ψ be the composition of the following maps

$$\mathbb{C}[x_1,\ldots,x_n] \to R_X \to \mathcal{O}_{X,a}.$$

quotient map, $\varphi: \bar{h} \mapsto \frac{\bar{h}}{1}$. Then $P' = \psi^{-1}(\frac{\bar{f}}{1})$.

Since $\mathcal{O}_{X,a}$ is a UFD and $\frac{\bar{f}}{1}$ is irreducible, $(\frac{\bar{f}}{1})$ is prime. Hence $\psi^{-1}(\frac{\bar{f}}{1})$ is prime.

Let X' := V(P'). Note that $X' \subsetneq X$. So dim $X' < \dim X = r$. But

$$T_a X' = \{ (x_1, \dots, x_n) \in \mathbb{C}^n \mid \sum_{i=1}^n \frac{\partial h}{\partial x_i}(a)(x_i - a_i) = 0, \ \forall h \in P' \}$$
$$= \{ (x_1, \dots, x_n) \in T_a X \mid \sum_{i=1}^n \frac{\partial f}{\partial x_i}(a)(x_i - a_i) = 0 \}.$$

Therefore dim $T_aX' \ge \dim T_aX - 1 = r - 1$. We can assume WLOG that *a* is also a smooth point of X' since smooth points form a Zariski open subset. Then we have

$$r - 1 \le \dim X' < r.$$

Conversely, let $a \in X'$ be such that a is a smooth point of X. Let $P' = I(X') \subset \mathbb{C}[x_1, \ldots, x_n]$. Then $\psi(P')\mathcal{O}_{X,a} \subset \mathcal{O}_{X,a}$ and it is a prime ideal. Let $\frac{\bar{f}}{\bar{g}} \in \psi(P')\mathcal{O}_{X,a} \setminus \{0\}$, can assume $\frac{\bar{f}}{\bar{g}}$ is irreducible. Consider $\psi^{-1}(\frac{\bar{f}}{\bar{I}}) \subset \mathbb{C}[x_1, \ldots, x_n]$. Since \bar{f} is irreducible, we have

$$X' \subset V(\psi^{-1}(\frac{\bar{f}}{1})) \subsetneqq X,$$

and hence $r-1 \leq \dim V(\psi^{-1}(\frac{\bar{f}}{1})) < r$. Finally we have $X' = V(\psi^{-1}(\frac{\bar{f}}{1}))$. \Box *Remark* 1.21. Consider $X = \mathbb{C}$, then $R_X = \mathbb{C}[X]$. Every $f \in R_X$ is determined (up to scalar multiple) by its zeros.

Can write f as $f = c(x - z_1)^{\mu_1} \cdots (x - z_k)^{\mu_k}$. Then f is determined by $(z_i, \mu_i), i = 1, \dots, k$.

Let Div(X) be the free abelian group generated by the set of all points of X, which is

$$\operatorname{Div}(X) := \{ f : X \to \mathbb{Z} \mid |\operatorname{supp} f| < \infty \}.$$

The elements have the form of formal sum $\sum_{i=1}^{k} \mu_i z_i \leftrightarrow f : X \to \mathbb{Z}, f(x) = \mu_i$ if $x = z_i$.

Moreover, if $\frac{f}{q} \in \mathbb{C}(x) = \mathbb{C}(X)$ with

$$f = c \prod_{i=1}^{k} (x - z_i)^{\mu_i}, \ z_i \neq z_j \text{ if } i \neq j,$$
$$g = c' \prod_{j=1}^{m} (x - w_j)^{\nu_j}, \ w_j \neq w_l \text{ if } j \neq l,$$

then

$$\frac{f}{g} \mapsto \sum_{i=1}^{k} \mu_i z_i - \sum_{j=1}^{m} \nu_j w_j.$$

It is a bijection if R_X is a UFD.

Now we consider a more general case.

Definition 1.10.1. Let X be any affine variety. Let \mathcal{Z} be the set of subvarieties of X of codimension 1. We define Div(X) as the free abelian group generated by \mathcal{Z} . $(\text{Div}(X) := \{f, \mathcal{Z} \to \mathbb{Z} \mid f(Z) \neq 0, \text{ for finitely many } Z \in \mathcal{Z}\})$ Div(X) is called the **group of divisors** of X.

Remark 1.22. Note that any $f \in \text{Div}(X)$ can be written as the formal sum $\sum_{Z \in \mathcal{Z}} f(Z)Z$. Conversely, any formal sum $\sum_{i=1}^{N} \mu_i Z_i$ correspondes to such an $f \in \text{Div}(X)$.

Elements $Z \in \mathcal{Z}$ are said to be prime divisors.

Now assume that X is smooth. Let $f \in R_X \setminus 0$ and $Z \in \mathcal{Z}$. For $a \in Z$, consider a local equation $\frac{h}{1} \in \mathcal{O}_{X,a}$ of Z at a. Consider $\frac{f}{1} \in \mathcal{O}_{X,a}$. Define $\operatorname{ord}_Z(f) := \mu$ s.t. $(\frac{h}{1})^{\mu} | \frac{f}{1}$ but $(\frac{h}{1})^{\mu+1} \nmid \frac{f}{1}$. Note that $\operatorname{ord}_Z(f)$ does not depend on $a \in Z$.

So we get a map

$$f \mapsto \operatorname{div}(f) := \sum_{Z \in \mathcal{Z}} \operatorname{ord}_Z(f) Z \in \operatorname{Div}(X).$$

More generally, $\forall \frac{\bar{f}}{\bar{g}} \in \mathbb{C}(X)$, we can define

$$\operatorname{div}(\frac{\bar{f}}{\bar{g}}) := \operatorname{div}(\bar{f}) - \operatorname{div}(\bar{g}) \in \operatorname{Div}(X)$$

and such element is called the **principal divisor**.

Definition 1.10.2. Consider div $(\frac{\bar{f}}{\bar{g}}) = \sum_{Z \in \mathcal{Z}} n_Z Z \in \text{Div}(X)$. If $n_Z > 0$, we call Z a **zero** for $\frac{\bar{f}}{\bar{g}}$. If $n_Z < 0$, we call Z a **pole** for $\frac{\bar{f}}{\bar{g}}$.

Remark 1.23. Let P(X) := the principal divisors. Note that $P(X) \subset$ Div(X) is a subgroup.

Definition 1.10.3. Let X be a smooth affine variety. The quotient group

$$\operatorname{Cl}(X) := \operatorname{Div}(X)/P(X)$$

is called the **divisor class group** or **Picard group** of X.

Remark 1.24. One can prove that in this smooth case, the general definition³ of Picard group is the same as the definition above.

Proposition 1.10.2. $Cl(X) = \{0\} \iff R_X \text{ is UFD.}$

Remark 1.25. Compare with $X = \mathbb{C}$, we have

$$D = \sum_{z \in \mathbb{C}} n_z z = \operatorname{div} \left(\frac{\prod_{\substack{z \in \mathbb{C} \\ n_z > 0}} (x - z)^{n_z}}{\prod_{\substack{z \in \mathbb{C} \\ n_z < 0}} (x - z)^{-n_z}} \right)$$

1.11. Morphisms between affine varieties.

Definition 1.11.1. Let $X = V(P) \in \mathbb{C}^n$ and $Y = V(Q) \subset \mathbb{C}^m$ be two affine varieties. A **regular map** or **morphism** between X and Y is a function

$$\varphi = (\varphi_1, \dots, \varphi_m) : X \to Y$$

s.t. with $\varphi_j : X \to \mathbb{C}$ in R_X (i.e. $\varphi_1, \ldots, \varphi_m$ are restrictions to X of polynomials in $\mathbb{C}[x_1, \ldots, x_n]$).

Definition 1.11.2. Let $\varphi = (\varphi_1, \ldots, \varphi_m) : X \to Y$ be a regular map and $a \in X$, we have the differential of φ at a

$$d_a\varphi: T_aX \to T_{\varphi(a)}Y$$

$$(\xi_1, \dots, \xi_n) \mapsto (\sum_{i=1}^n \frac{\partial \varphi_1}{\partial x_i}(a)(\xi_i - a_i) + \varphi_1(a), \dots, \sum_{i=1}^n \frac{\partial \varphi_m}{\partial x_i}(a)(\xi_i - a_i) + \varphi_m(a))$$

Remark 1.26. (Exer.) One can check that the differential is well defined by using chain rule.

Let $\varphi = (\varphi_1, \ldots, \varphi_m) : X \to Y$ be a regular map. It induces a ring homomorphism

$$\varphi^* : R_Y \to R_X$$
$$\bar{f} \mapsto \bar{f} \circ \varphi.$$

Definition 1.11.3. A regular map $\varphi = (\varphi_1, \ldots, \varphi_m) : X \to Y$ is called **dominant** if $Y = \overline{\varphi(X)}$.

Proposition 1.11.1. Let $\varphi : X \to Y$ be a dominant regular map between affine varieties. Then $\varphi^* : R_Y \to R_X$ induces a homomorphism

$$\varphi^* : \mathbb{C}(Y) \to \mathbb{C}(X).$$

In particular, $\dim X \ge \dim Y$.

³isomorphism classes of line bundles(or invertible sheaves)

Proof. Note that if $g \in R_Y \setminus 0$, then $\varphi^*(g) \neq 0$, otherwise $\varphi(X) \subset \{b \in Y \mid g(b) = 0\} \subsetneq Y$. Then $\overline{\varphi(X)} \neq Y$, contradiction. Hence we can define $\varphi^*(\frac{f}{g}) := \frac{f \circ \varphi}{g \circ \varphi} \in \mathbb{C}(X)$ and it is a homomorphism. \Box

1.12. Appendix. primary decomposition. Now We recall some commutative algebra [6].

Definition 1.12.1. Let R be a ring and $I \subset R$ be an ideal of R. I is called **primary** if whenever $a, b \in R$ are such that $ab \in I$ and $a \notin I$, then $b \in \sqrt{I}$.

We have immediately that the radical of a primary ideal is prime.

Theorem 1.12.1 (Lasker-Noether decomposition theorem).

(1) Let R be a Noetherian ring, then every ideal $I \subset R$ admits the so called primary representation as

$$I = Q_1 \cap \dots \cap Q_N$$

where Q_i 's are primary ideals of R.

Moreover, we can find Q_1, \ldots, Q_N s.t.no Q_i contains $\bigcap_{j \neq i} Q_j$ and the associated prime ideals $\sqrt{Q_1}, \ldots, \sqrt{Q_n}$ are distinct. In this case it is called irredundant primary representation.

(2) Let R be a ring and $I \subset R$ be an ideal that admits an irredundant primary representation

$$I = Q_1 \cap \cdots \cap Q_N.$$

Then $I = \sqrt{I}$ iff Q_1, \ldots, Q_N are prime.

Theorem 1.12.2. Let R be a ring and $I \subset R$ be an ideal admitting an irreduandant primary representation

$$I = Q_1 \cap \dots \cap Q_N.$$

Then the prime ideals $P_i := \sqrt{Q_i}$ are uniquely determined by I. And they are called the associated primes of I.

Example 1.12.1. Let $I = (x^2, y) \subset \mathbb{C}[x, y]$ be an ideal. It has an irreduandant primary representation

$$I = (x^2) \cap (y).$$

And its radical is

$$\sqrt{I} = (x) \cap (y).$$

More generally, let $f \in \mathbb{C}[x_1, \ldots, x_n]$ and write $f = g_1^{k_1} \cdots g_N^{k_N}$ where g_i are irrd and not associated to each other. Then we have

$$(f) = (g_1^{k_1}) \cap \dots \cap (g_N^{k_N}).$$

And its radical is

$$\sqrt{(f)} = (g_1) \cap \cdots \cap (g_N) = (g_1 \cdots g_N).$$

Example 1.12.2. Let \Bbbk be any field. Consider the polynomial ring $\Bbbk[x, y]$ and ideal $I = (x^2, xy)$. Then for any $c \in \Bbbk$,

$$I = (x) \cap (y - cx, x^2)$$

is an irredundant primary representation of I.

Question 1.12.1. What are the associated primes of I?

Corollary 1.12.1. Let $I \subset \mathbb{C}[x_1, \ldots, x_n]$ be a radical ideal. Then there exists unique prime ideals $P_1, \ldots, P_N \subset \mathbb{C}[x_1, \ldots, x_n]$ s.t.

$$I = P_1 \cap \cdots \cap P_N$$

and $P_i \neq P_j$, $\forall i \neq j$.

1.13. Appendix. transcendental extension.

Definition 1.13.1. An extension K|k is **transcendental** if it is not algebraic (i.e. if $\exists \alpha \in K$ not algebraic over k).

Example 1.13.1. (1) $\mathbb{Q}(\pi)|\mathbb{Q}$ is transcendental.

- (2) $\mathbb{Q}(i)|\mathbb{Q}$ is algebraic.
- (3) Let k be any field and K be the fraction field of $k[x_1, \ldots, x_n]$, which is $K = k(x_1, \ldots, x_n)$. Then K|k is transcendental.

Definition 1.13.2. Let $K|\Bbbk$ be a field extension. Let $L \subset K$. The elements of L are said to be **algebraically independent** over \Bbbk if $\forall \alpha_1, \ldots, \alpha_N \in L$, there is no $f \in \Bbbk[x_1, \ldots, x_n]$ s.t. $f(\alpha_1, \ldots, \alpha_N) = 0$. In this case, L is called a **transcendental set** over \Bbbk .

Definition 1.13.3. A transcendental basis for K|k is a transcendental set $L \subset K$ over k that is not contained in any bigger transcendental set.

Remark 1.27. $L \subset K$ is a transcendental basis for $K | \mathbb{k}$ iff $K | \mathbb{k}(L)$ is algebraic.

Example 1.13.2. $\{x_1, \ldots, x_n\} \in \mathbb{k}(x_1, \ldots, x_n)$ form a transcendental basis for $\mathbb{k}(x_1, \ldots, x_n) | \mathbb{k}$.

Theorem 1.13.1. There exists a transcendental basis for any field extension. Moreover, any two transcendental basis have the same cardinality.

See Chapter II Sec.12 in [6] for the proof.

Definition 1.13.4. The cardinality of any transcendental basis for $K|\Bbbk$ is called the **transcendental degree** of $K|\Bbbk$, denoted by tr. deg $(K|\Bbbk)$.

Remark 1.28. tr. deg $\mathbb{R}|\mathbb{Q} = \text{tr. deg } \mathbb{C}|\mathbb{Q} = \infty$

1.14. Appendix. Localization.

Definition 1.14.1. Let R be a ring and $P \subset R$ be a prime ideal. The **localization** of R at P is

$$R_P := \{ (f,g) \in R \times R \mid g \notin P \} /$$

where (f,g) (f',g') iff $\exists h \notin P$ s.t. (fg'-gf')h=0.

One may view the element $(f,g) \in R_P$ as $\frac{f}{g}$. We have a morphism

$$\varphi: R \to R_P$$
$$f \mapsto \frac{f}{1}.$$

And $\forall f \in R \setminus P$, $\varphi(f)$ is invertible. More generally, $\frac{f}{g}$ is invertible in R_P if $f \notin P$ and $(\frac{f}{g})^{-1} = \frac{g}{f}$.

Let $\mathfrak{m} := \{ \frac{f}{g} \mid f \in P \}$. It is a (unique) maximal ideal of R_P and (R_P, \mathfrak{m}) is a local ring.

Remark 1.29. If R is an integral domain then so is R_P .

Proposition 1.14.1. If R is Noetherian, then so is R_P .

Proof. Let $I \subset R_P$ be an ideal and $\overline{I} := \varphi^{-1}(I) \subset R$. Since R is Noetherian, $\overline{I} = (\overline{f_1}, \ldots, \overline{f_m})$ for some $\overline{f_i} \in R$.

Let $u \in I$, then $u = \frac{f}{g}$ and $gu = f \in I$. Then $gu = \varphi(f)$. Hence $f \in \overline{I}$. It follows that $f = \sum h_i \overline{f_i}$. Then $gu = \sum \varphi(h_i)\varphi(\overline{f_i})$. Hence $u \in (\varphi(\overline{f_1}), \dots, \varphi(\overline{f_m}))$.

2. PROJECTIVE VARIETIES

2.1. **Projective Space.** We first define the projective space in our setting.

Definition 2.1.1. We define the complex projective *n*-space by $\mathbb{P}^n := \mathbb{C}^{n+1} \setminus \{0\} / \sim$, where $(a_0, \ldots, a_n) \sim \lambda(a_0, \ldots, a_n)$ for some $\lambda \in \mathbb{C}^{\times}$

For $(a_0, \ldots, a_n) \in \mathbb{C}^{n+1}$, we denote its equivalence class in \mathbb{P}^n by $[a_0 : \cdots : a_n]$ and it is called the homogeneous coordinates of the cooresponding point.

Remark 2.1. There are also several other equivalent definitions, e.g.

$$\mathbb{P}^n = \{ L \subset \mathbb{C}^{n+1} \mid \dim_{\mathbb{C}} L = 1 \}$$

Remark 2.2. Let $\pi : \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{P}^n$ by the quotient map, $\pi(a_0, \ldots, a_n) = [a_0 : \cdots : a_n]$. The Euclidean topology induces the quotient topology on \mathbb{P}^n , called the classical topology.

 \mathbb{P}^n is compact w.r.t. the classical topology and moreover, it is Hausdorff.

One can view \mathbb{P}^n as the compactification of \mathbb{C}^n .

For any i = 0, ..., n, define $H_i := \{[a_0 : \cdots : a_n] \mid a_i = 0\}$ and $U_i := \mathbb{P}^n \setminus H_i$. Then consider the map

$$\phi_i: U_i \to \mathbb{C}^n$$
$$[a_0: \dots: a_n] \mapsto (\frac{a_0}{a_i}, \dots, \frac{a_{n-1}}{a_i}, \frac{a_{n+1}}{a_i}, \dots, \frac{a_n}{a_i}).$$

It is easy to see that ϕ_i is bijective with inverse

$$\phi_i^{-1}: \mathbb{C}^n \to U_i$$

(z_0, ..., z_n) $\mapsto [z_1: \cdots: z_i: 1: z_{i+1}: \cdots: z_n]$

Remark 2.3. ϕ, ϕ^{-1} are continuous w.r.t. the classical topology. And $\mathcal{A} := \{(U_i, \phi_i) \mid i = 0, \dots, n\}$ is a topological atlas of \mathbb{P}^n .

If j < i, $\phi_j \circ \phi_i^{-1}$ is holomorphic on $\mathbb{C}^n \setminus \{z_{j+1} = 0\} = \phi_j(U_i \cap U_j)$. In particular, \mathcal{A} is a holomorphic atlas and then \mathbb{P}^n is a complex manifold.

It follows that $\mathbb{P}^n = \mathbb{C}^n \sqcup H_i = \mathbb{C}^n \sqcup \mathbb{P}^{n-1} = \mathbb{C}^n \sqcup \mathbb{C}^{n-1} \sqcup \cdots \sqcup \mathbb{C}^0$.

Remark 2.4. H_i is called "the point at ∞ ".

Definition 2.1.2. A closed algebraic set in \mathbb{P}^n is a subset \mathbb{P}^n of the form

$$V(f_1, \dots, f_m) = \{ [a_0 : \dots : a_n] \mid f_j(a_0, \dots, a_n) = 0, \ j = 1, \dots, m \}$$

where $f_1, \ldots, f_m \in \mathbb{C}[x_0, \ldots, x_n]$ are homogeneous.

Remark 2.5. We could have required every $f \in \mathbb{C}[x_0, \ldots, x_n]$ (not necessarily homogeneous) to be

$$f(\lambda a_0, \ldots, \lambda a_n) = 0, \ \forall \lambda \in \mathbb{C}^{\times}.$$

We can write $f = \sum_{k} f_{(k)}$ where $f_{(k)}$ are the homogeneous components of degree k. Then the condition above is equivalent to

$$f_{(k)}(a_0,\ldots,a_n)=0, \ \forall k.$$

Proposition 2.1.1. Let $f_1, \ldots, f_m \in \mathbb{C}[x_0, \ldots, x_n]$ be homogeneous. Let $I = (f_1, \ldots, f_m) \subset \mathbb{C}[x_0, \ldots, x_n]$. Then I is an homogeneous ideal(i.e. $\forall f \in I$, its homogeneous components $f_{(k)} \in I$).

Conversely, if $I \subset \mathbb{C}[x_0, \ldots, x_n]$ is a homogeneous ideal, then there exist $f_1, \ldots, f_m \in \mathbb{C}[x_0, \ldots, x_n]$ homogeneous s.t. $I = (f_1, \ldots, f_m)$.

Proof. Let $g = \sum_{i=1}^{m} h_i f_i \in I$. Then the homogeneous components of g are

$$g_{(k)} = \sum_{i=1}^{m} h_{(k-\deg f_i)} f_i \in I, \ \forall k.$$

Conversely, if I is homogeneous. Take generators $I = (f_1, \ldots, f_m)$, then $(f_i)_{(k)} \in I$, $\forall i, k$. Then $I = ((f_1)_{(k)}, \ldots, (f_m)_{(k)} \mid \forall k \ge 0)$. \Box

Lemma 2.1.1. Let $I \subset \mathbb{C}[x_0, \ldots, x_n]$ be an ideal. For any $\lambda \in \mathbb{C}^{\times}$, set $I^{\lambda} := \{f^{\lambda} = f(\lambda x_0, \ldots, \lambda x_n) \mid f \in I\}$. Then

I is homogeneous $\iff I = I^{\lambda}, \ \forall \lambda \in \mathbb{C}^{\times}.$

Proof. (\Rightarrow) (\subset) Write $f = (f^{\frac{1}{\lambda}})^{\lambda}$. If I is homogeneous, then $f^{\frac{1}{\lambda}} \in I$, $\forall f \in I, \lambda$.

 (\supset) Let $f^{\lambda} \in I^{\lambda}$, $f \in I$. Write $f = \sum f_{(k)}$. Since I is homogeneous, $f_{(k)} \in I$. Then $\lambda^k f_{(k)} \in I$. It follows that $f^{\lambda} = \sum \lambda^k f_{(k)} \in I$.

(\Leftarrow) Let $f \in I$. Write $f = \sum f_{(k)}$. Then $f^{\lambda} = \sum \lambda^k f_{(k)} \in I$. Let $d := \deg f = \max\{k \mid f_{(k)} \neq 0\}$. Let $\lambda_0, \ldots, \lambda_d \in \mathbb{C}^{\times}$ be such that

$$\prod_{i < j} (\lambda_j - \lambda_i) = \begin{pmatrix} 1 & \lambda_0 & \cdots & \lambda_0^d \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \lambda_d & \cdots & \lambda_d^d \end{pmatrix} \neq 0$$

Then we have

$$\begin{pmatrix} f^{\lambda_0} \\ \vdots \\ f^{\lambda_d} \end{pmatrix} = \begin{pmatrix} 1 & \lambda_0 & \cdots & \lambda_0^d \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \lambda_d & \cdots & \lambda_d^d \end{pmatrix} \begin{pmatrix} f_{(0)} \\ \vdots \\ f_{(d)} \end{pmatrix} \in I^{\oplus d+1}$$

Therefore

$$\begin{pmatrix} f_{(0)} \\ \vdots \\ f_{(d)} \end{pmatrix} = \begin{pmatrix} 1 & \lambda_0 & \cdots & \lambda_0^d \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \lambda_d & \cdots & \lambda_d^d \end{pmatrix}^{-1} \begin{pmatrix} f^{\lambda_0} \\ \vdots \\ f^{\lambda_d} \end{pmatrix} \in I^{\oplus d+1}$$

and $f_{(k)} \in I, \forall k$.

Proposition 2.1.2. Let $I \subset \mathbb{C}[x_0, \ldots, x_n]$ be a homogeneous ideal. Let $\sqrt{I} = P_1 \cap \cdots \cap P_N$ be the irredundant primary representation. Then $\sqrt{I}, P_1, \ldots, P_N$ are homogeneous.

Proof. By Lemma 2.1.1, if I is homogeneous, then $I = I^{\lambda}$, $\forall \lambda$. Hence $\sqrt{I} = \sqrt{I^{\lambda}}$. We have that \sqrt{I} is homogeneous.

Moreover, $\sqrt{I^{\lambda}} = \sqrt{I} = P_1 \cap \cdots \cap P_N$ is an irredundant primary representation of $\sqrt{I^{\lambda}}$. Hence

$$(\sqrt{I})^{\lambda} = P_1^{\lambda} \cap \dots \cap P_N^{\lambda}, \ \forall \lambda.$$

And for any i = 1, ..., N there is a j such that $P_i^{\lambda} = P_j$ for infinitely many $\{\lambda_i\}_{i\geq 1}$. Then $P_i^{\lambda_k \lambda_1^{-1}} = P_i$ for every k.

Hence \sqrt{I} , P_i are all homogeneous.

2.2. **Projective Varieties.** We have the following results which are similar with the affine case.

Proposition 2.2.1. Let $I_1, I_2, I_\alpha \subset \mathbb{C}[x_0, \ldots, x_n], \ \alpha \in A$ be homogeneous ideals. Then

 $\begin{array}{ll} (1) \ \ If \ I_1 \subset I_2, \ then \ V(I_2) \subset V(I_1), \\ (2) \ \ V(I_1) \cup V(I_2) = V(I_1 \cap I_2) = V(I_1 \cdot I_2) \ \ (I_1I_2 = \{fg | f \in I_1, g \in I_2\}), \\ (3) \ \ V(\sum_{\alpha \in A} I_\alpha) = \bigcap_{\alpha \in A} V(I_\alpha), \\ (4) \ \ V(\sqrt{I}) = V(I) \\ \ \ (\sqrt{I} = \{f \in \mathbb{C}[x_1, \dots, x_n] \ | \ f^K \in I \ for \ some \ K > 0\}). \end{array}$

Remark 2.6. From **Proposition 2.2.1**, if $\sqrt{I} = P_1 \cap \cdots \cap P_N$ is an irredundant primary representation, then

$$V(\sqrt{I}) = V(P_1) \cup \cdots \cup V(P_N).$$

Since $P_i \neq P_j$ if $i \neq j$, $V(P_i) \neq V(P_j)$.

28

Definition 2.2.1. The Zariski topology in \mathbb{P}^n is the topology whose closed subsets are the closed algebraic set in \mathbb{P}^n .

Definition 2.2.2. A projective variety is an non-empty set $X \subset \mathbb{P}^n$ of the form X = V(P) for some homogeneous prime ideal $P \subset \mathbb{C}[x_0, \ldots, x_n]$.

In this case, $R_X : \mathbb{C}[x_0, \ldots, x_n]/P$ is the homogeneous coordinate ring of X.

Remark 2.7. Let $f \in \mathbb{C}[x_0, \ldots, x_n]$ be homogeneous. In general, it doesn't define a "function" $X \to \mathbb{C}$.

Remark 2.8. If $I \subsetneq \mathbb{C}[x_0, \ldots, x_n]$ is a homogeneous ideal, then $I \subset (x_0, \ldots, x_n)$. Note that $V(x_0, \ldots, x_n) = \emptyset$.

Theorem 2.2.1 (Hilbert's Nullstellensatz). Let $I \subset \mathbb{C}[x_0, \ldots, x_n]$ be a homogeneous ideal. Let $f \in \mathbb{C}[x_0, \ldots, x_n]$ be homogeneous of degree deg $f \geq 1$. If f(a) = 0, $\forall a \in V(I)$, then $f \in \sqrt{I}$.

Proof. Case I. If $V(I) = \emptyset$, then $\{a \in \mathbb{C}^{n+1} \mid g(a) = 0, \forall g \in I\}$ is either empty or $\{0\}$. If it is empty, then $I = \mathbb{C}[x_0, \ldots, x_n]$ and by **Theorem 1.2.1**, $f \in \sqrt{I}$. If it is $\{0\}$, then again by **Theorem 1.2.1**, $\sqrt{I} = (x_0, \ldots, x_n)$. Since deg $f \ge 1$, $f \in \sqrt{I}$.

Case II. If $V(I) \neq \emptyset$, then $\{a \in \mathbb{C}^{n+1} \mid g(a) = 0, \forall g \in I\} = \pi^{-1}(V(I)) \cup \{0\}$ where $\pi : \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{P}^n$ is the quotient map. Then by **Theorem 1.2.1**, $f(a) = 0, \forall a \in \pi^{-1}(V(I)) \cup \{0\}$ implies that $f \in \sqrt{I}$. \Box

Remark 2.9. We don't have $I(V(J)) = \sqrt{J}$ in the projective setting.

Remark 2.10. Let $I \subset \mathbb{C}[x_0, \ldots, x_n]$ be a homogeneous ideal. The set $C := \{a \in \mathbb{C}^{n+1} \mid g(a) = 0, \forall g \in I\}$ is a cone and it is called the **affine cone** of V(I).

Corollary 2.2.1. Let $I \subset \mathbb{C}[x_0, \ldots, x_n]$ be a homogeneous ideal. Then $V(I) = \emptyset$ (in \mathbb{P}^n) $\iff \sqrt{I} = \mathbb{C}[x_0, \ldots, x_n]$ or $\sqrt{I} = (x_0, \ldots, x_n)$

Proposition 2.2.2. For $i = 0, \ldots, n$, let

$$\phi_i: U_i = \mathbb{P}^n \setminus H_i \to \mathbb{C}^n$$
$$[a_0: \dots: a_n] \mapsto (\frac{a_0}{a_i}, \dots, \frac{\widehat{a_i}}{a_i}, \dots, \frac{a_n}{a_i}).$$

Then ϕ_i is an homeomorphism w.r.t the Zariski topology. Moreover,

- (1) If $P \subset \mathbb{C}[x_0, \ldots, x_n]$ is a homogeneous prime ideal, X = V(P), then $\phi_i(X \setminus (X \cap H_i)) = \phi_i(X \cap U_i) = V(P')$ with $P' = \{f(y_1, \ldots, 1i th, \ldots, y_n) \mid f \in P\} \subset \mathbb{C}[y_1, \ldots, y_n]$ is an affine variety.
- (2) Conversely, if $Q' \subset \mathbb{C}[y_1, \ldots, y_n]$ is a prime ideal, then

$$\phi_i^{-1}(V(Q')) = V(Q)$$

where Q is generated by the set $\{x_i^d g(\frac{x_0}{x_i}, \ldots, \frac{\widehat{x_i}}{x_i}, \ldots, \frac{x_n}{x_i}) \mid g \in Q', d = \deg g\}.$

Proof. Consider the case i = 0 (other cases are similar). Consider the maps α, β .

Defined by

$$\alpha: f(x_0, \dots, x_n) \mapsto f(1, y_1, \dots, y_n)$$
$$\beta: g \mapsto x_0^d g(\frac{x_1}{x_0}, \dots, \frac{x_n}{x_0})$$

Note that $\beta(g)$ is homogeneous of degree d. $\alpha(\beta(g)) = g$. But $\beta(\alpha(f)) \neq f$. However, if f is homogeneous and $x_0 \nmid f$ then $\beta(\alpha(f)) = f$.

Let $Y \subset \mathbb{P}^n \setminus H_0 = U_0$ be a Zariski closed subset. Let \overline{Y} be the Zariski closure of Y in \mathbb{P}^n . Then

$$\overline{Y} = V(f_1, \dots, f_m)$$

for some homogeneous f_1, \ldots, f_m . And since $Y = \overline{Y} \cap U_0$,

$$\phi_0(Y) = V(\alpha(f_1), \dots, \alpha(f_m))$$

Hence ϕ_0 is closed.

Conversely, If $Z = V(g_1, \ldots, g_m) \subset \mathbb{C}^n$ is a closed algebraic set. Then

$$\phi_0^{-1}(Z) = V(\beta(g_1), \dots, \beta(g_m)) \cap U_0.$$

Hence ϕ_0 is continuous.

(1) Let $P \subset \mathbb{C}[x_0, \ldots, x_n]$ be a homogeneous prime ideal. $X = V(P) \subset \mathbb{P}^n$ is a projective variety. We have seen that

$$\phi_0(X \cap U_0) = V(P') \subset \mathbb{C}^n$$

where $P' = \alpha(P) \subset \mathbb{C}[y_1, \ldots, y_n].$

Claim. P' is a prime ideal.

Indeed.

WLOG we can assume that $x_0 \notin P$. Otherwise $X = V(P) \subset H_0$, i.e. $1 \in \alpha(P)$ and then $P' = \mathbb{C}[y_1, \ldots, y_n]$.

Note that $\beta(\alpha(f)) \in P$, $\forall f \in P$. Indeed, If $f = x_0^m \tilde{f}$ with $x_0 \nmid \tilde{f}$, then $\beta(\alpha(f)) = \beta(\alpha(\tilde{f}))$. Since $x_0 \notin P$, $\tilde{f} \in P$. Now it is sufficient to consider the case where $x_0 \nmid f$.

Write $f = \sum_{k=0}^{d} f_{(k)}$ where $d = \deg f$. Since P is homogeneous, $f_{(k)} \in P$. Then

$$\alpha(f) = \sum_{k} \alpha(f_{(k)})$$

$$\beta(\alpha(f)) = x_0^d \sum_{k} \alpha(f_{(k)})(\frac{x_1}{x_0}, \dots, \frac{x_n}{x_0}) = \sum_{k} x_0^{d-e_k} \beta(\alpha(f_{(k)}))$$

where $e_k = \deg \alpha(f_{(k)})$.

Note that $\beta(\alpha(f_{(k)})) = \frac{f_{(k)}}{x_0^{\varepsilon}}$ where ε is the maximal power s.t. $x_0^{\varepsilon}|f_{(k)}$. But since $f_{(k)} \in P$ and $x_0 \notin P$, $\frac{f_{(k)}}{x_0^{\varepsilon}} \in P$ implies that $\beta(\alpha(f_{(k)})) \in P$, $\forall k$. Hence $\beta(\alpha(f)) \in P$

Now let $g, h \in \mathbb{C}[y_1, \ldots, y_n]$ be such that $gh \in P'$. Then there exists $f \in P$ s.t. $gh = \alpha(f)$. Then $\beta(g)\beta(h) = \beta(gh) = \beta(\alpha(f)) \in P$. Since P is prime, either $\beta(g) \in P$ or $\beta(h) \in P$. Hence either $g \in P'$ or $h \in P'$. (2) Similar.

Corollary 2.2.2. If $X \subset \mathbb{P}^n$ is a projective variety. $U_i := \mathbb{P}^n \setminus H_i$, i = $0, \ldots, n$. Then

$$X = \bigcup_{i=0}^{n} (X \cap U_i).$$

Example 2.2.1. Conseider $X = V(xy - z^2) \subset \mathbb{P}^2$. In $\mathbb{P}^2 \setminus V(x)$, $X \setminus (X \cap V_x) \cong V(u - v^2) \subset \mathbb{C}^2$. And $X \cap V(x) = \{[0:1:0]\}$ In $\mathbb{P}^2 \setminus V(z)$, $X \setminus (X \cap V_z) \cong V(st - 1) \subset \mathbb{C}^2$. And $X \cap V(z) = \{[0:1:0]\}$ $0], [1:0:0]\}.$

Definition 2.2.3. Let $X = V(P) \subset \mathbb{P}^n$ be a projective variety.

(1) For any $a = [a_0 : \cdots : a_n] \in X$, the local ring at a in X is

$$\mathcal{O}_{X,a} := \frac{\{\frac{f}{g} \mid f, g \in \mathbb{C}[x_0, \dots, x_n] \text{ homogeneous of the same degree, } g(a) \neq 0\}}{\{\frac{f}{g} \mid f, g \in \mathbb{C}[x_0, \dots, x_n] \text{ homogeneous of the same degree, } g(a) \neq 0, f \in P\}}$$

(2) The function field of X is defined as

$$\mathbb{C}(X) := \frac{\{\frac{f}{g} \mid f, g \in \mathbb{C}[x_0, \dots, x_n] \text{ homogeneous of the same degree, } g \notin P\}}{\{\frac{f}{g} \mid f, g \in \mathbb{C}[x_0, \dots, x_n] \text{ homogeneous of the same degree, } g \notin P, f \in P\}}$$

(3) For any $a = [a:_0:, \dots: a_n] \in X$, the **tangent space** of X at a is

$$T_a X := Der(\mathcal{O}_{X,a}, a)$$

(4) dim $X := \text{tr. deg}_{\mathbb{C}} \mathbb{C}(X)$.

(5) $a \in X$ is smooth iff dim $T_a X = \dim X$. $a \in X$ is singular if it is not smooth.

Remark 2.11. (Under the previous notations)

(1) If $a \in X \cap U_i$, then

$$\mathcal{O}_{X,a} \cong \mathcal{O}_{\phi_i(X \cap U_i),\phi_i(a)}$$

holds for $i = 0, \ldots, n$.

Indeed. Take, WLOG, i = 0. Recall the map α, β in the proof of **Proposition 2.2.2**. We have seen that $phi_0(X \cap U_0) = V(\alpha(P))$. Note that if $g \in \mathbb{C}[x_0, \ldots, x_n]$ is homogeneous and $g(a) \neq 0$, then $\alpha(q)(\phi_0(a)) \neq 0$. Hence α induces a homomorphism

$$\mathcal{O}_{X,a} \to \mathcal{O}_{\phi_i(X \cap U_i),\phi_i(a)}$$
$$\frac{f}{g} \mapsto \frac{\alpha(f)}{\alpha(g)}.$$
(surj.) Let $\frac{h}{k} \in \mathcal{O}_{\phi_i(X \cap U_i),\phi_i(a)}, \ \frac{h}{k} = \frac{\alpha(\beta(h)x_0^{\deg k})}{\alpha(\beta(k)x_0^{\deg h})}.$

(inj.). Clear.

Moreover, this map sends the ideal generated by P to the ideal generated by $P' = \alpha(P)$. Then the statement follows from

$$\mathcal{O}_{\phi_0(X \cap U_0),\phi_0(a)} \cong \frac{\mathcal{O}_{\mathbb{C}^n,\phi_0(a)}}{P'\mathcal{O}_{\mathbb{C}^n,\phi_0(a)}}.$$

See the proof of the theorem about the univity of Taylor series.

(2) If $X \subsetneq H_i$ i.e. $X \cap U_i \neq \emptyset$, then $\mathbb{C}(X) \cong \mathbb{C}(\phi_i(X \cap U_i))$. In particular, $\mathbb{C}(X) \cong \operatorname{Frac}(\mathcal{O}_{X,a}) \ \forall a \in X.$

Indeed. The first isomorphism is induced as in (1). The second isomorphism follows the fact that

$$\mathbb{C}(\phi_i(X \cap U_i)) \cong \operatorname{Frac}(\mathcal{O}_{\phi_i(X \cap U_i), \phi_i(a)}).$$

Proposition 2.2.3. Let $X = V(P) \subset \mathbb{P}^n$ be a projective variety. If $X \cap U_i \neq i$ \emptyset , $i = 0, \ldots, n$, and let $a \in X \cap U_i$. Then dim $X = \dim \phi_i(X \cap U_i)$ and a is a smooth point of X iff $phi_i(a)$ is a smooth point of $\phi_i(X \cap U_i)$.

Proof. From remark 2.11(2), we have

$$\dim X = \operatorname{tr.} \deg_{\mathbb{C}} \mathbb{C}(X) = \operatorname{tr.} \deg_{\mathbb{C}} \mathbb{C}(\phi_i(X \cap U_i)) = \dim \phi_i(X \cap U_i).$$

And from remark 2.11 (1), we have

$$Der_{\mathcal{O}_{X,a},a} \cong Der_{\mathcal{O}_{\phi_i(X \cap U_i),\phi_i(a)},\phi_i(a)} \cong Der_{R_{\phi_i(X \cap U_i)},\phi_i(a)}.$$

Moreover, $T_{\phi_i(a)} = Der_{R_{\phi_i(X \cap U_i)}, \phi_i(a)} + \phi_i(a)$. Then

$$\dim T_a X \ge \dim X$$

and equality holds iff a is smooth in X.

Remark 2.12. Let $X = V(P) \subset \mathbb{P}^n$ be a projective variety. Consider the affine cone over X

$$\mathcal{C} = \{a = (a_0, \dots, a_n) \in \mathbb{C}^{n+1} \mid f(a) = 0, \forall f \in P\} \subset \mathbb{C}^{n+1}.$$

Then $\dim \mathcal{C} = \dim X + 1$

Example 2.2.2. Let $f_1, \ldots, f_m \in \mathbb{C}[x_0, \ldots, x_n]$ be homogeneous of degree 1. Let $P := (f_1, \ldots, f_m)$ and X := V(P). (Assume $X \neq \emptyset$). Then X is a projective variety of dimension dim $X = n - \operatorname{rk} A$ where $A = (a_{ik}) \in$ Mat_{m,n+1}(\mathbb{C}) with $f_j = \sum_{k=0}^n a_{jk} x_k$. **Indeed.** Let $i \in \{0, \ldots, n\}$ s.t. $a \in U_i$. Then $\phi_i(X \cap U_i) \subset \mathbb{C}^n$ is a linear

space of dimension $n - \operatorname{rk} A$.

Take, WLOG, i = 0. $X = \{ [x_0 : \cdots : x_n] \mid \sum_{k=0}^n a_{jk} x_k = 0, j = 0 \}$ $1,\ldots,m$. Take $y_k = \frac{x_k}{x_0}$, then

$$\phi_0(X \cap U_0) = \{(y_1, \dots, y_n) \mid \sum_{k=1}^n a_{jk} y_k = -a_{j0}\}$$

Exercise 2.2.1. In this case, X is homeomorphic to $\mathbb{P}^{\dim X}$.

_	 _	

Exercise 2.2.2. If $f = \sum_{i=0}^{n} c_i x_i$ is homogeneous of degree 1 and H := V(f), then

$$\mathbb{P}^n \setminus H \to \mathbb{C}^n$$

$$[a_0 : \dots : a_n] \mapsto (\frac{a_0}{f_{a_0,\dots,a_n}}, \dots, \widehat{\frac{a_i}{f_{a_0,\dots,a_n}}}, \dots, \frac{a_0}{f_{a_0,\dots,a_n}})$$

where $\frac{a_i}{f_{a_0,...,a_n}}$ is such that $c_i \neq 0$. Such H is called an hyperplane.

Proposition 2.2.4. Let $X \subset \mathbb{P}^n$ be a projective variety of dim X = n - 1. 1. Then X = V(f) for some $f \in \mathbb{C}[x_0, \ldots, x_n]$ irreducible homogeneous polynomial.

Such X are called hypersurfaces

Proof. Assume X = V(P) for some homogeneous prime P. Let $f \in P \setminus 0$ be of minimum degree. Note that f is irreducible. Then $X = V(P) \subset V(f)$. Assume by contradiction that $\exists a \in V(f) \setminus X$.

Case 1. $\exists i \in \{0, \ldots, n\}$ s.t. $X \cap U_i \neq \emptyset$ and $a \in U_i$. Then

$$\phi_i(X \cap U_i) \subsetneqq \phi_i(V(f) \cap U_i) \subset \mathbb{C}^n$$

of the same dimension n-1. Contradiction.

Case 2. No such *i* s.t. $X \cap U_i \neq \emptyset$. And $a \notin U_i$. Then $\exists j \in \{0, \ldots, n\}$ s.t. $X \subset H_j$. Hence $x_j \in P$. Since x_j is an element of minimal degree of $P, X = H_j$. By **Case 1.**, replace f with x_j .

Example 2.2.3 (Quadrics). Let $f \in \mathbb{C}[x_0, \ldots, x_n]$ be homogeneous irreducible polynomial of deg f = 2. WLOG, assume that

$$f = \sum_{i=0}^{r} x_i^2$$

where r is called the rank of f. X = V(f) is called a quadric in \mathbb{P}^n .

Consider $X \cap U_k$ for $k = 0, \ldots, n$.

Case 1. $k \leq r$. Then $\phi_k(X \cap U_k) = V(1 + \sum_{i \neq k} y_i^2) \subset \mathbb{C}^n$, $y_i = \frac{x_i}{x_k}$ is a most homogeneous face since the Lapphin (2) $\widehat{2u_i}$ (2) is full merit

smooth hypersurface since the Jacobian $(2y_0, \ldots, \widehat{2y_k}, \ldots, 2y_r)$ is full rank. Case 2. k > r. Then $\phi_k(X \cap U_k) = V(\sum_{i=0}^r y_i^2), y_i = \frac{x_i}{x_k}$. The Jacobian $(2y_0, \ldots, 2y_r)$ is 0 for any $(y_0, \ldots, \widehat{y_k}, \ldots, y_n) = (0, \ldots, 0, y_{r+1}, \ldots, \widehat{y_k}, \ldots, y_n)$. Hence If r < n, X contains singular points. X is smooth iff r = n.

Exercise 2.2.3. $f = x_0^2 + \sum_{i=1}^r x_i^2$ is irreducible $\iff \Delta = -4 \sum_{i=1}^r x_i^2 \in \mathbb{C}[x_1, \ldots, x_n]$ is not a square.

2.3. Divisors.

Definition 2.3.1. Let $X = \mathbb{P}^n$ be a smooth projective variety. A prime divisor is a subvariety $Z \subset X$ of codim Z = 1.

Definition 2.3.2. Let \mathcal{Z} be the set of all prime divisors of X. We define the **group of divisors** Div(X) of X as the free abelian group generated by \mathcal{Z} .

 $D \in \text{Div}(X)$ is called a divisor of X and

$$D = \sum_{Z \in \mathcal{Z}} n_Z Z$$

where $n_Z \in \mathbb{Z}$ and only finitely many of $n_Z \neq 0$.

Remark 2.13. For any $Z \in \mathcal{Z}$ and $a \in Z$, if $a \in U_i$ for some *i*, then

$$\phi_i(Z \cap U_i) \subset \phi_i(X \cap U_i)$$

is a prime divisor.

Moveover, $\mathcal{O}_{X,a} \cong \mathcal{O}_{\phi_i(X \cap U_i),\phi_i(a)}$. Recall that we have defined the notion of the local equation of $\phi_i(Z \cap U_i)$ in $\phi_i(X \cap U_i)$, which is an irreducible $u_Z \in \mathcal{O}_{\phi_i(X \cap U_i),\phi_i(a)}$ viewed in $\mathcal{O}_{X,a}$.

Let $u \in \mathbb{C}(X) \setminus 0$. Then for any $Z \in \mathcal{Z}$, choose $a \in Z$ and a local equation $u_Z \in \mathcal{O}_{X,a}$.

Define the order of u at Z as $\operatorname{ord}_{\phi_i(Z \cap U_i)}(u)$ in affine case, where we identify $\mathbb{C}(X) = \mathbb{C}(\phi_i(X \cap U_i))$ and $a \in X \cap U_i$. One can prove that this definition does not depend on a.

Note that $\operatorname{ord}_Z(u) \neq 0$ only for finitely many Z. Then we can define $\operatorname{div}(u) := \sum_{Z \in \mathbb{Z}} \operatorname{ord}_Z(u) Z \in \operatorname{Div}(X)$. It is called a principal divisor.

Moreover, $\operatorname{div}(uv) = \operatorname{div}(u) + \operatorname{div}(v)$, $-\operatorname{div}(u) = \operatorname{div}(u^{-1})$. Hence the set P(X) of principal divisors is a subgroup of $\operatorname{Div}(X)$.

Definition 2.3.3. The divisor class group of X is the group

$$\operatorname{Cl}(X) := \operatorname{Div}(X)/P(X).$$

Proposition 2.3.1. $Cl(\mathbb{P}^n) = \mathbb{Z}$.

Proof. We have seen that $Z \in \mathbb{Z}$ corresponds to Z = V(f) for some irreducible $f \in \mathbb{C}[x_0, \ldots, x_n]$. We can define $\deg(Z) := \deg(f)$. And this can be extended to a group homomorphism

$$\deg : \operatorname{Div}(\mathbb{P}^n) \to \mathbb{Z}$$
$$\sum_{Z \in \mathcal{Z}} n_Z Z \mapsto \sum_{Z \in \mathcal{Z}} n_Z \operatorname{deg}(Z)$$

We have the following short exact sequence

$$0 \to \ker(\deg) \to \operatorname{Div}(\mathbb{P}^n) \xrightarrow{\deg} \mathbb{Z} \to 0.$$

Claim. $\ker(\deg) = P(\mathbb{P}^n).$

Indeed. Let $u = \frac{f}{g} \in \mathbb{C}(\mathbb{P}^n)$ where $f, g \in \mathbb{C}[x_0, \ldots, x_n]$ are homogeneous polynomials of the same degree. Factorize f, g

$$f = \prod_{k=1}^{M} f_{k}^{\mu_{k}}, \ \deg(f) = \sum \mu_{k} \deg(f_{k})$$
$$f = \prod_{k=1}^{N} g_{k}^{\nu_{k}}, \ \deg(g) = \sum \nu_{k} \deg(g_{k}).$$

Hence div $(u) = \sum_{k=1}^{M} \mu_k V(f_k) - \sum_{k=1}^{N} \nu_k V(g_k)$ and deg(u) = deg(f) - deg(g) = 0.

On the other hand, if $D \in \text{Div}(\mathbb{P}^n)$ has $\deg(D) = 0$, we can write

$$D = \sum_{k=1}^{M} \mu_k Z_k - \sum_{l=1}^{N} \nu_l Y_l$$

where μ_k, ν_l are positive and $Z_k = V(f_k), Y_l = V(g_l)$ for some f_k, g_l .

Therefore
$$D = \operatorname{div}(\frac{\prod f_k^{\mu_k}}{\prod g_l^{\nu_l}}).$$

Remark 2.14. Let $X \subset \mathbb{P}^n$ be a smooth projective variety of dim X = 1. We have the following exact sequence

$$0 \to \mathcal{J}(X) (\cong \mathbb{C}^g / \Lambda) \to \operatorname{Pic}(X) \xrightarrow{\operatorname{deg}} \mathbb{Z} \to 0$$

where $\Lambda \cong \mathbb{Z}^{2g} \leq \mathbb{C}^{g}$ is a lattice of maximal rank and g is the topological genus of X.

2.4. Grassmannians. A good reference is [2]

Definition 2.4.1. Let V be a n-dimensional vector space over \mathbb{C} . Let $1 \leq k \leq n$. The grassmannian is the set

 $Gr(k, V) := \{ W \subset V \mid W \text{ is a subspace of } \dim(W) = k \}.$

We write Gr(k, n) for $V = \mathbb{C}^n$.

Remark 2.15. This definition can be extended to any field k of char $k \neq 2$.

Example 2.4.1. (1) $Gr(1,n) = \mathbb{P}^{n-1}$, (2) $Gr(n-1,n) = (\mathbb{P}^{n-1})^{\vee}$.

In general, given $W \in Gr(k, n)$ and choose a basis of W: $v_i = \sum_j a_{ij}e_j$, $i = 1, \ldots, k$ where e_i is the standard basis of \mathbb{C}^n . We can represent W with $A = (a_{ij}) \in \operatorname{Mat}_{k,n}(\mathbb{C})$ (rk A = k).

For $A, A' \in \operatorname{Mat}_{k,n}(\mathbb{C})$, if there exists $C \in \operatorname{GL}_k(\mathbb{C})$ such that A' = CA, then they represent the same subspace W.

Now for any multi-index $I = (i_1 < \cdots < i_k)$, define

$$U_I := \{ W \in Gr_{k,n} \mid W \cap \operatorname{Span}(e_j \mid j \notin I) = \{0\} \}.$$

Note that

$$W \in U_I \iff W \oplus \operatorname{Span}(e_j \mid j \notin I) = \mathbb{C}^n$$

$$\iff \text{if } v_1, \dots, v_k \text{ form a basis of } W \text{ then } v_1, \dots, v_k, e_j, \ j \notin I \text{ form a basis of } \mathbb{C}^n$$

$$\iff \text{if } A \in \operatorname{Mat}_{k,n}(\mathbb{C}) \text{ represent } W \text{ then } \det \tilde{A} \neq 0$$

$$\iff \det(A^{(I)} := (A^{i_1}, \dots, A^{i_k}) \neq 0.$$

It follows that any $W \in U_I$ is represented by a unique $A \in \operatorname{Mat}_{k,n}(\mathbb{C})$ s.t. $A^{(I)} = I_K$. Indeed, if W is represented by A, then $A^{(I)} \in \operatorname{GL}_k(\mathbb{C})$, hence $A' := (A^{(I)})^{-1}A$ represents W and $(A')^{(I)} = I_k$. Define

$$\phi_I : U_I \to \mathbb{C}^{k(n-k)} (\cong \operatorname{Mat}_{k,n-k}(\mathbb{C}))$$
$$W \mapsto (A^{(j)} \mid j \notin I).$$

where A is the representative of W s.t. $A^{(I)} = I_k$. ϕ_I is a bijection. And we can endow U_I with the unique topology such that ϕ_I is homeomorphism w.r.t the classical topology on $\mathbb{C}^{k(n-k)}$.

Since $Gr(k,n) = \bigcup_I U_I$, we can consider the smallest topology on Gr(k,n)generated by the topologies on U_I . And with this topology Gr(k,n) is a compact, Hausdorff topological space. And $\phi_J \circ \phi_I^{-1}$ is \mathcal{C}^{∞} . We have that Gr(k,n) is a smooth manifold.

Remark 2.16. There is a better way to proceed. Consider the action of $\operatorname{GL}_k(\mathbb{C})$

$$\operatorname{GL}_{k}(\mathbb{C}) \times \{A \in \operatorname{Mat}_{k,n}(\mathbb{C}) \mid \operatorname{rk} A = k\} \to \{A \in \operatorname{Mat}_{k,n}(\mathbb{C}) \mid \operatorname{rk} A = k\}$$
$$(C, A) \mapsto CA.$$

Then $Gr(k,n) = \{A \in \operatorname{Mat}_{k,n}(\mathbb{C}) \mid \operatorname{rk} A = k\}/\operatorname{GL}_k(\mathbb{C})$ with the quotient topology and it is a smooth manifold.

Lemma 2.4.1. Let $\tau \in \bigwedge^k V \setminus \{0\}$ where V is a n-dimensional vector space over \mathbb{C} .

Then dim $\{w \in W \mid \tau \land w = 0\} \leq k$ and the equality holds iff τ is decomposable, i.e. $\tau = v_1 \land \cdots \land v_k$.

Proof. Let w_1, \ldots, w_m be the basis of $\{w \in W \mid \tau \land w = 0\}$. Complete w_1, \ldots, w_m to a basis of V as $w_1, \ldots, w_m, w_{m+1}, \ldots, w_n$. Then $\tau = \sum_I P_I w_I$ for multi-index $I = (i_1 < \cdots < i_k)$. We have

$$0 = \tau \wedge w_j = \sum_{I} P_I w_I \wedge w_j$$
$$= \sum_{\substack{I \\ j \notin I}} P_I w_I \wedge w_j$$
$$\Rightarrow P_I = 0 \text{ if } j \notin I, \ \forall j = 1, \dots, m.$$

But |I| = k and $\tau \neq 0$, hence $k \geq m$. Moreover, if k = m, then $P_I = 0$ if $I \neq \{1, \ldots, m\}$. Hence $\tau = w_1 \wedge \cdots \wedge w_k$.

Conversely, if $\tau = v_1 \wedge \cdots \wedge v_k \neq 0$, then

$$\dim\{w \in W \mid \tau \land w = 0\} = \operatorname{Span}(v_1, \dots, v_k)$$

and it has dimension k.

Theorem 2.4.1 (Plüker embedding). We have an injective map.

$$P: Gr(k, n) \to \mathbb{P}^{\binom{n}{k}-1}$$

Moreover, the image of P, still denoted by Gr(k,n), is a closed algebraic set.

36

Proof. Let $W \in Gr(k, n)$. Choose a basis $\{v_1, \ldots, v_k\}$ of W and consider $v_1 \wedge \cdots \wedge v_k \in \bigwedge^k \mathbb{C}^n$. Define the map

$$P: Gr(k,n) \to \mathbb{P}(\bigwedge^k \mathbb{C}^n)$$
$$W \mapsto [v_1 \wedge \dots \wedge v_k].$$

Identifying $\bigwedge^k \mathbb{C}^n \cong \mathbb{C}^{\binom{n}{k}}$ we get map to the projective space.

Moreover, P is injective. Indeed, if P(W) = P(W'), then for basis $\{v_i\}$ for W and $\{v'_i\}$ for W',

$$v_1 \wedge \cdots \wedge v_k = \lambda v'_1 \wedge \cdots \wedge v'_k \ \lambda \in \mathbb{C}^{\times}$$

Since $W = \{v \in \mathbb{C}^n \mid v_1 \land \cdots \land v_k \land v = 0\} = W'$. And moreover,

$$P(W) = [v_1 \wedge v_k]$$

= $[\sum_{I=(1 \le i_1 < \dots < i_k \le n)} P_I e_I]$
= $[P_I \mid I].$

 P_I are called the Plücker coordinates of W.

Claim. $Gr(k,n) \subset \mathbb{P}^{\binom{n}{k}-1}$ is a closed algebraic set.

Indeed. We know that $Gr(k, n) = \{ [\tau] \in \mathbb{P}(\bigwedge^k \mathbb{C}^n) \mid \text{s.t. } \tau = v_1 \wedge \cdots \wedge v_k \}.$ Consider the linear map

$$f: \mathbb{C}^n \to \bigwedge^{k+1} \mathbb{C}^n$$
$$v \mapsto \tau \wedge v.$$

 τ decomposable \iff dim ker $f = k \iff$ rk f = n - k.

Let $\mathcal{B} := \{e_1, \ldots, e_n\}$ be the standard basis of \mathbb{C}^n and $\mathcal{C} := \{e_I \mid I = (i_1 < \cdots < i_{k+1})\}$ be the basis of $\bigwedge^{k+1} \mathbb{C}^n$. Represent f w.r.t. these basis as

$$M_{\mathcal{C}}^{\mathcal{B}}(f) = A \in \operatorname{Mat}_{\binom{n}{k+1}, n}(\mathbb{C})$$

where entries of A are coefficient of τ . Since τ is decomposable, the determinants of all (n - k + 1) minors of A are 0, which are polynomials in P_I .

Example 2.4.2. The first non-trivial example is $Gr(2,4) \subset \mathbb{P}^5$. $U_I \cong \mathbb{C}^4$, hence Gr(2,4) is an hypersurface in \mathbb{P}^5 .

Theorem 2.4.2. $Gr_{k,n} \subset \mathbb{P}^{\binom{n}{k}-1}$ is a projective variety of dimension k(n-k). Moreover, the ideal generated by

$$\sum_{a=1}^{k+1} (-1)^a P_{i_1,\dots,i_k,j_a} P_{j_1,\dots,\hat{j_a},\dots,\hat{j_a},\dots,j_{k+1}}$$

for any two sequence $1 \leq i_1 < \cdots < j_{k-1} \leq n, \ 1 \leq j_1 < \cdots < j_{k+1} \leq n$ is prime and $V(P) = Gr_{k,n}$.

ZIWEI WEI

References

- M. F. Atiyah, I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, 1969.
- [2] P.Griffiths, J. Harris, Principles of algebraic geometry, John Wiley & Sons, 2014
- [3] R. Hartshorne Algebraic geometry, Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977.
- [4] I.R. Shafarevich, Basic Algebraic Geometry 1: Varieties in Projective Space, Third edition. Springer, Heidelberg, 2013.
- [5] D. Mumford, Algebraic Geometry I, Complex Projective Varieties, Springer Berlin, Heidelberg, 1995
- [6] O. Zariski, P. Samuel, Commutative Algebra, Volume I, Springer, 1958.
- [7] O. Zariski, P. Samuel, Commutative Algebra, Volume II, Springer Science & Business Media, 2013