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Abstract. This is my personal note1 of course Advanced Geometry 3
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0. Preface

The main reference is [5].
...

1. Affine Varieties

1.1. Algebraic subsets. All ring will be assumed as commutative ring with
unit.

Definition 1.1.1. A closed algebraic subset X ⊂ Cn is the set of zeroes
of a finite numbers of polynomials

X = {a = (a1, . . . , an) | fi(a1, . . . , an) = 0,∀i = 1, . . . ,m}
where fi ∈ C[x1, . . . , xn].

It is also denoted by V (f1, . . . , fm).

Remark 1.1. The ideal generated by f1, . . . , fm is

I = (f1, . . . , fm) = {
∑

gifi | gi ∈ C[x1, . . . , xn]}.

And the set of zeroes of I is X = V (I) = {a ∈ Cn | f(a) = 0, ∀f ∈ I}.
By Hilbert basis theorem, every ideal I ⊂ C[x1, . . . , xn] is f.g., i.e., ∃f1, . . . , fm

s.t. I = (f1, . . . , fm). Hence we will talk about V (I), I ⊂ C[x1, . . . , xn].

Proposition 1.1.1. Let I1, I2, {Iα}α∈A be ideas of C[x1, . . . , xn]. a = (a1, . . . , an) ∈
Cn. Then the following hold true.

(1) If I1 ⊂ I2, then V (I2) ⊂ V (I1),
(2) V (I1) ∪ V (I2) = V (I1 ∩ I2) = V (I1 · I2) (I1I2 = {fg|f ∈ I1, g ∈ I2}),
(3) V (

∑
α∈A Iα) =

⋂
α∈A V (Iα),

(4) If ma := (x1 − a1, . . . , xn − an), then V (ma) = {a},
(5) V (

√
I) = V (I)

(
√
I = {f ∈ C[x1, . . . , xn] | fK ∈ I for some K > 0}).

Proof. (1) evident.
(2) Since I1I2 ⊂ I1 ∩ I2 ⊂ I1, I2, (1) implies that

V (I1I2) ⊃ V (I1 ∩ I2) ⊃ V (I1), V (I2).

Conversely, let a ∈ V (I1I2). If a /∈ V (I1 ∩ I2), then ∃f ∈ I1 ∩ I2 s.t.
f(1) ̸= 0. Then f2(a) ̸= 0, but f2 ∈ I1I2. The remain is similar.

(3) (⊂) Iα ⊂
∑
Iα∀α , hence V (

∑
Iα) ⊂ V (Iα)∀α.

(⊃) Immediately.
(4) b ∈ Vma iff bi − ai = 0, ∀i.
(5) (⊂)

√
I ⊃ I

(⊃) Let a ∈ V (I). If a /∈ V (
√
I), then ∃f ∈

√
I s.t. f(a) ̸= 0. Hence

fK(a) ̸= 0. contradiction. □

Remark 1.2. (1) It can happen that I1I2 & I1 ∩ I2,
(2)
√
I is an ideal and it is called the radical of I,
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(3) Proposition 1.1.1(2), (3) implies that algebraic subsets of Cn satisfy
the axiom of closed sets of a topology on Cn and it is called Zariski
topology.

Remark 1.3. The Zariski topology is not Hausdorff unless the base field k is
finite.

1.2. Affine varieties.

Definition 1.2.1. An affine variety is a non-empty closed algebraic set
X ⊂ Cn of the form X = V (P ) with P prime ideal.

Example 1.2.1. Let f ∈ C[x1, . . . , xn] be irrd. Then V (f) = V ((f)) ⊂ Cn

is an affine variety and it is called an hypersurface of Cn.
Note that if f is not irrd then (f) is not prime.

Example 1.2.2. Let g2, . . . , gn ∈ C[x1]. Consider X := {(a, g2(a), . . . , gn(a)) ∈
Cn | a ∈ C}.

It is a closed algebraic subset by X = V (x2−g2(x1), . . . , xn−gn(x1)). And
since C[x1, · · ·xn]/(x2− g2(x1), . . . , xn− gn(x1)) ∼= C[x1] which is a integral
domain. Hence X is an affine variety and it is called rational space curve.

Exercise 1.2.1. Let φ1, . . . , φk ⊂ C[x1, . . . , xn] be homogeneous polynomials
of degree 1. Suppose that {φi} are linearly independent as elements of (Cn)∗.
Then for any b1, . . . , bk ∈ C, fixed X = V (φ1− b1, . . . , φk− bk), which is the
set of solutions of the linear system φi = bi.

Prove that X is an affine variety. It is called a linear subspace of Cn of
dimension n− k.

Now for any subset S ⊂ Cn, we can define

I(S) := {f ∈ C[x1, . . . , xn] | f(a) = 0, ∀a ∈ S}.

We have the following amazing theorem.

Theorem 1.2.1 (Hilbert’s Nullstellensatz). For any ideal J ⊂ C[x1, . . . , xn],

I(V (J)) =
√
J.

In particular, if the ideal J is prime, then I(V (J)) = J .

Remark 1.4. (1) The theorem holds true for any algebraic closed field(See
[1]).

(2) It fails if the field is not algebraic closed. For example, take k = R,
I(V (x2 + y2 + 1)) = R[x, y] where V (x2 + y2 + 1) is actually empty.

(3) (Study’s lemma) Let k = k̄. If f ∈ k[x1, . . . , xn] is irrd, then I(V (f)) =
(f)

Lemma* 1.2.1. If Y1 ⊂ Y2 are algebraic subsets of Cn, then I(Y1) ⊃ I(Y2).

Proposition* 1.2.1. V (I(S)) = S̄
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Proof. On the one hand we have S ⊂ V (I(S)) where by definition S is
closed. Hence S̄ ⊂ V (I(S)). On the other hand, recall that the closure

S̄ =
⋂
W

where W runs over all algebraic subsets of Cn that contain S. And we can
write W = V (J) for some ideal J . Then S ⊂ V (J) and by Lemma* 1.2.1,
we have I(S) ⊃ I(V (J)) ⊃ J . Then by Proposition 1.1.1(1), W = V (J) ⊂
V (I(S)) for any such W . It follows the statement. □

Definition 1.2.2. Let V (P ) ⊂ Cn be an affine variety. And let k ⊂ C be
a subfield. A point a ∈ V (P ) is called a k-generic point if the following
condition holds true: ∀f ∈ k[x1, . . . , xn], if f(a) = 0, then f ∈ P .

Example 1.2.3. Consider g2, . . . , gn ∈ Q[x1] and let X = V (x2−g2(x1), . . . , xn−
gn(x1)) be the rational space curve. Let a := (π, g2(pi), . . . , gn(π)) ∈ X.
Then a is Q-generic.

Indeed, let f ∈ Q[x1, . . . , xn] is s.t. f(a) = 0. But φ := f(x1, x2 −
g2(x1), . . . , xn − gn(x1)) ∈ Q[x1], hence φ = 0. It follows that φ ∈ P .

Proposition 1.2.1. Let V (P ) be an affine variety. Let k ⊂ C be a subfield
s.t. tr. degC|k =∞. Then there exists a ∈ V (P ) a k-generic point.

Proof. Let P = (f1, . . . , fm) and, WLOG, assume that f1, . . . , fm ∈ k[x1, . . . , xn]
(Otherwise let k′ be the minimal subfield of C containing k and the coef-

ficients of f1, . . . , fm. Then tr.degC|k′ =∞ and any k′-generic point is also
a k-generic point).

Let P0 = P ∩ k[x1, . . . , xn], which is prime. And let K be the fraction
field of k[x1, . . . , xn]/P0.

Since for any f/g ∈ K, it is a root of gy − f ∈ k(x̄1, . . . , x̄n)[y], where
x̄1, . . . , x̄n is the isomorphic class in k[x1, . . . , xn]/P0. We have thatK|k(x̄1, . . . , x̄n)
is algebraic. Hence tr.degK|k ≤ n <∞.

In this situation, there exists a field homomorphism

ϕ : K → C
s.t. ϕ|K = idK(Indeed, let λ1, . . . , λδ ∈ K be a transcendence basis for K|k.
Let z1, . . . , zδ ∈ C be algebraically independent over k. The map λi 7→ zi, ∀i
extends to a unique field homomorphism from K → C. See [6] Ch.2 Thm
33).

Let ai := ϕ(x̄i) ∈ C.
Claim. a = (a1, . . . , an) ∈ X is a k-generic point.
Indeed. First we have that fi(x̄1, . . . , x̄n) = 0 i = 1, . . . ,m in k[x1, . . . , xn]/P0.

It follows that

0 = ϕ(fi(x̄1, . . . , x̄n)) = fi(ϕ(x̄1), . . . , ϕ(x̄n)) = fi(a1, . . . , an) i = 1, . . . ,m.

Hence a ∈ X.
Now let f ∈ k[x1, . . . , xn] s.t. f(a) = 0. If f /∈ P0, then [f ] ∈ k[x1, . . . , xn]

is nonzero. Applying ϕ to this class we get that f(a) = 0, which is contra-
diction. □
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Remark 1.5. One could have defined k-generic point for all V (I) where
I ⊂ C[x1, . . . , xn] is any ideal. But in the following case, it doesn’t exist.

Let I = (xy) ⊂ C[x, y] be an ideal and a = (a1, a2). If a2 = 0, then for
y ⊂ k[x, y], ∀k ⊂ C, y(a) = a2 = 0, but y /∈ I. It is similar when a1 = 0.

Now we can give a proof of Theorem 1.2.1.

Proof. Step 1. Let J = P be prime. Let f ∈ I(V (P )) and k be the minimal
subfield of C containing Q and the coefficients of f . Then tr.degC/k = ∞
and by Proposition 1.2.1, there exists a k-generic point a ∈ X. And since
f ∈ I(X), f(a) = 0, then f ∈ P .

Step 2. Not let J be any ideal and f ∈ I(V (J)). Consider the primary
rep √

J = P1 ∩ · · · ∩ PN .

Then V (J) = V (
√
J) = V (P1)∪ · · · ∪V (PN ). So f ∈ I(V (Pi)) i = 1, . . . , N .

Then by Step 1., f ∈ Pi i = 1, . . . , N , and f ∈
√
I. □

Corollary 1.2.1. There is an order-reversing correspondence

{J ⊂ C[x1, . . . , xn] | J =
√
J} ↔ {closed algebraic subset of Cn}
J 7→ V (J)

I(X)←[ X

Definition 1.2.3. Let X = V (P ) ⊂ Cn be an affine variety with P ⊂
C[x1, . . . , xn] prime ideal. The ring RX := C[x1, . . . , xn]/P is the affine
coordinate ring of X.

Corollary 1.2.2. In this situation, RX is isomorphic to the ring of func-
tions X → C which are restrictions of polynomials in C[x1, . . . , xn].

Proof. Let F(X) := {F : X → C | s.t. ∃f ∈ C[x1, . . . , xn] s.t. F (a) =
f(a), ∀a.

Restriction yields an surjective homomorphism

C[x1, . . . , xn]→ F(X)→ 0

and its kernel is P . Then we have the isomorphism. □

1.3. Tangent spaces of affine varieties.

Definition 1.3.1. Let X = V (P ) be an affine variety with P ∈ C[x1, . . . , xn
prime. Let a ∈ X, the Zariski tangent space of X at a is the linear
subspace of Cn given by the equations

n∑
i=1

∂f

∂xi
(a)(xi − ai) = 0, , ∀f ∈ P

and denoted by TX,a
1.

1I prefer TaX so I might change this symbol hereafter
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Remark 1.6. (1) If P = (f1, . . . , fm), then

TaX = V ({
m∑
i=0

∂fj
∂xi

(a)(xi − ai) = 0 | j = 1, . . . ,m}).

Indeed, (⊂) is obvious. (⊃) If (b1, . . . , bn) ∈ Cn is s.t.
n∑

i=0

∂fj
∂xi

(a)(bi − ai) = 0, ∀j = 1, . . . ,m.

Let f ∈ P , we can write f =
∑m

i=1 figi for some gi ∈ C[x1, . . . , xn].
Then

n∑
i=0

∂f

∂xi
(a)(bi − ai) =

n∑
i=0

m∑
i=1

∂figi
∂xi

(a)(bi − ai) = 0.

(2) TaX ⊂ Cn is an affine subspace passing through a.

1.4. Tangent spaces and derivations. Let R := RX be the affine coor-
dinate ring of X.

Recall that a derivation of R (centered) at a ∈ X is a C-linear map

D : R→ C
s.t.

(1) D(fg) = f(a)D(g) + g(a)D(f), , ∀f, g ∈ R,
(2) D(λ) = 0, ∀λ ∈ C.
Let DerR,a be the set of such derivations.

Remark 1.7. DerR,a is a vector space over C.
Proposition 1.4.1. Let x̄1, . . . , x̄n ∈ R be the classes of x1, . . . , xn. Then
the map

φ : DerR,a → Cn

D 7→ (D(x̄1), . . . , D(x̄n))

is an injective linear map and its image is TaX − a.
Proof. Exercise. □

1.5. Dimension theory. The Zariski tangent space we have defined before
is an affine subspace of Cn. As a vector space, it has dimension

dimTaX = n− rk(
∂fj
∂xi(a)

)i,j .

For any k ∈ N, we have

{a ∈ X | dimTaX ≥ k} = {a ∈ X | rk(
∂fj
∂xi(a)

)i,j ≤ n− k}

= {a ∈ X | the determinants of all minors of ?

(n− k + 1)× (n− k + 1) of
∂fj
∂xi(a)

are 0}.
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Hence {a ∈ X | dimTaX ≥ k} is a closed subset of X in the Zariski
topology of X.

Remark 1.8. (1) {a ∈ X | dimTaX ≥ k} ⊂ {a ∈ X | dimTaX ≥ k − 1},
(2) Let d := min{dimTaX | a ∈ X}. Observe that

U := {a ∈ X | dimTaX = d} = X − {a ∈ X | dimTaX ≥ d+ 1}

is open and nonempty.

Proposition 1.5.1. Let X = V (P ) be an affine variety with P ⊂ C[x1, . . . , xn]
prime. Let C(X) = Frac(RX). (C(X) is called the field of rational functions
of X) Then

d = tr.deg(C(X)/C).

Definition 1.5.1. The dimension of an affine varietyX is dimX := tr.deg(C(X)|X).
And a point a ∈ X is smooth if dimTaX = dimX. a ∈ X is singular if

dimTaX > dimX.

Remark 1.9. Let x̄1, . . . , x̄n ∈ RX be the classes of x1, . . . , xn. Then C(X) =
C[x̄1, . . . , x̄n].

Indeed. (⊂) is clear.
(⊃) Let f̄

ḡ ∈ C(X) where f̄ , ḡ ∈ RX and ḡ ̸= 0. And f̄ , ḡ are the classes

of f, g respectively. Then f̄ .ḡ are polynomials in x̄1, . . . , x̄n. Then f̄
ḡ ∈

bC[x̄1, . . . , x̄n].
It implies that tr.deg(C(X)|C) <∞.

Example 1.5.1. (1) dimCn = n
(2) ∀a ∈ Cn, dim{a} = 0 (Jacobian is the identity)
(3) Let f ∈ C[x1, . . . , xn] be irrd(f /∈ C). Let X = V (f).

0 ≤ rk(
∂f

∂x1
, . . . ,

∂f

∂x1
) ≤ 1

Notice that there exists a ∈ X s.t. rk( ∂f
∂xi

) = 1.

Indeed. If rk( ∂f
∂xi

) = 0,∀a ∈ X, then ∂f
∂xi
∈ I(X) = (f). Hence

f | ∂f∂xi
,∀i. It follows that ∂f

∂xi
= 0,∀i sicne deg ∂f

∂xi
< deg f if ∂f

∂xi
̸= 0.

Then f ∈ C contradiction.
Therefore, dimX = n− 1.

(4) Consider the rational space curve X = V (x2 − g2(x1, . . . , xn − gn(x1)).
Its Jacobian is 

− ∂g2
∂x1

1 0 · · · 0

− ∂g2
∂x1

0 1 · · · 0
...

...
...

. . .
...

−∂gn
∂x1

0 0 · · · 1


of rank n− 1. Hence dimX = n− 1.
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(5) Consider the cuspidal cubic curve X = V (x2 − y3) ⊂ C2. Its Zariski
tangent space at p = (a3, a2) is

TpX = {(x, y) ∈ C2 | 2a3(x− a3)− 3a4(y − a2) = 0}

=

{
C2, a = 0,

2a3(x− a3)− 3a4(y − a2) = 0, a ̸= 0.

Then min{dimTpX} = 1 and dimX = n− 1. X is singular at (0, 0)

Lemma 1.5.1. Let R be an integral domain over field k and P ⊂ R a prime
ideal. Let K := Frac(R) and K ′ = Frac(R/P ). Assume tr. degK|k < ∞.
Then

tr. degK|k ≥ tr. degK ′|k
and the equality holds iff P = (0).

Proof. If P = (0) everything is clear. Assume P ̸= (0) and assume by
contradiction that

tr. degK|k < tr. degK ′|k
By Ch.II, Sec 12, Thm 27 of [6], there exist φ1, . . . , φn ∈ R/P that are
algebraically independent over k where n = tr.degK|k. Let f1, . . . , fn ∈ R
s.t. their classes in R/P are φ1, . . . , φn respectively. Let p ∈ P , p ̸= 0. Then
p, f1, . . . , fn are algebraically dependent. Hence there exists a polynomial
Φ ∈ k[y, x1, . . . , xn]\0 s.t. Φ(p, f1, . . . , fn) = 0. WLOG, we can assume Φ is
irrd (since R is an integral domain). Moreover Φ ̸= αy, α ∈ k since p ̸= 0.
Hence Φ(0, x1, . . . , xn) ̸= 0. And passing to R/P , Φ(0, φ1, . . . , φ)n) = 0,
contradiction. □

Proposition 1.5.2. Let X,Y be two affine varieties with X & Y . Then
dimX < dimY .

Proof. Let X = V (P ), Y = V (Q) with P,Q ⊂ C[x1, . . . , xn] prime. Then
Q & P . We have

0→ P̄ → RY → RX → 0

where P̄ = P/Q. Then RX = RY /P̄ .
By Lemma 1.5.1, tr. deg(C(Y )|C) ≥ tr. deg(C(X))|C and the equality

holds iff P̄ = (0), which is P = Q. □

Corollary 1.5.1. Let X ⊂ Cn be an affine variety of dimension n−1. Then
X is a hypersurface(i.e. ∃f ∈ C[x1, . . . , xn] irrd s.t. X = V (f) ).

Proof. Let X = V (P ) with P prime. Let f ∈ P , f ̸= 0. Then X ⊂ V (f).
And there exist f1, . . . , fN ∈ C[x1, . . . , xn] irrd s.t.

f = f1 · · · fN ∈ P.

Since P is prime, there exists i ∈ {1, . . . , N} s.t. fi ∈ P . Hence X ⊂ V (fi).
And since dimX = n − 1 = dimV (fi), by Proposition 1.5.2, we have
X = V (fi). □
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Corollary 1.5.2. Let X ⊂ Cn be an affine variety. Then dimX = 0 ⇔
X = {a} for some a ∈ Cn

Proof. (⇐) Clear. (⇒) If ∃a ∈ X and {a} ≠ X, then 0 = dim{a} <
dimX = 0, contradiction. □

Remark 1.10. Let X = V (P ) ⊂ Cn be an affine variety with P prime.
And dimX = n − r. In general, there are no f1, . . . , fr ∈ C[x1, . . . , xn] s.t.
P = (f1, . . . , fr).

For example, Let X ⊂ C3 be an affine variety with dimX = 1. If P =
I(X), the minimal number of generators of P is 3. Consider the map

φ : C→ C3

a 7→ (a3, a4, a5)

Let X := {(a3, a4, a5) | a ∈ C} ⊂ C3. Then clearly we have that X ⊂ V (I)
where I = (xz − y2, x3 − yz, x2y − z2). Conversely, let (x, y, z) ∈ V (I), set
a := y

x if x ̸= 0 (if x = 0 then y = z = 0). Then we have

a3 =
y3

x3
=
xzy

x3
= x,

a4 = xa = y,

a3 = ya = z.

Therefore, X = V (I).
Moreover, I is a prime ideal and it cannot be generated by 2 polynomials.
Claim.

√
I is prime.

Indeed. By Theorem 1.2.1,
√
I = I(X). If ∃f1, f2 ∈ C[x, y, z] s.t.

f1f2 ∈
√
I but f1, f2 /∈

√
I. Then f1 ◦ φ, f2 ◦ φ ∈ C[t] \ 0 but (f1f2) ◦ φ =

(f1 ◦ φ)(f2 ◦ φ) = 0, contradiction. □
Claim.

√
I cannot be generated by 2 polynomials.

Indeed. Let f ∈
√
I. It can be written as

f =
∑

cijkx
iyjzk

s.t.
∑
cijkt

3i+4j+5k = 0, ∀t. i.e., ∀m ≥ 0, ∀(i, j, k) s.t. 3i+ 4j + 5k = m,∑
(i,j,k)

3i+4j+5k=m

cijk = 0, ∀m ≥ 0.

(1) m = 0. c000 = 0.
(2) m = 1, 2. None.
(3) m = 3. c100 = 0.
(4) m = 4. c010 = 0.
(5) m = 5. c001 = 0.
(6) m = 6. c200 = 0.
(7) m = 7. c110 = 0.
(8) m = 8. c101 + c020 = 0. We get C(xz − y2).
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(9) m = 9. c300 + c011 = 0. We get C(x3 − yz).
(10) m = 10. c210 + c002 = 0. We get C(x2y − z2).
In conclusion, f has the form

f = α(xz − y2) + β(x3 − yz) + γ(x2y − z2) + f̃ , α, β, γ ∈ C.

If
√
I = (f, g), then

g = α′(xz − y2) + β′(x3 − yz) + γ′(x2y − z2) + g̃.

and we can express xz− y2, x3− yz, x2y− z2 as a linear cpmbination of f, g.
But they are linearly indenpendent. Contradiction. □

To prove Proposition 1.5.1, we need the following lemmas.

Lemma 1.5.2. Let U1, U2 ⊂ X be nonempty Zariski open subsets. Then
U1 ∩ U2 ̸= ∅.

Proof. Let X = V (P ) with P prime. We can write the open sets as

Ui = X ∩ (Cn \ V (Ii)), i = 1, 2.

Nonempty implies that there exists ai ∈ X and fi ∈ Ii s.t. fi(ai) ̸= 0, and
hence fi /∈ P for i = 1, 2. If U1 ∩ U2 = ∅, then

X∩(Cn\V (I1))∩(Cn\V (I2)) = X∩(Cn\(V (I1)∪V (I2))) = X∩(Cn\V (I1I2)) = ∅.

It implies that X ⊂ V (I1I2) and then f1f2 ∈ P , Contradiction. □

Definition 1.5.2. Let S be a ring and R ⊂ S be a subring. A map R→ S
is said to be a derivation of R (with values in S) if

(1) D(x+ y) = D(x) +D(y), ∀x, y ∈ R,
(2) D(xy) = xD(y) + yD(x),∀x, y ∈ R.

Definition 1.5.3. Let S be a ring and R ⊂ S be a subring. Let R′ ⊂ R
be a subring. A derivation D : R → S is called a R′-derivation if D(x) =
0, ∀x ∈ R′. We denote DR/R′(S) the set of all R′-derivation of R. If S = R,
we write DR/R′ = DR/R′(S)

Remark 1.11. (1) DR/R′(S) is an S-module. In particular, if S is a field,
then DR/R′(S) is an S-vector space.

(2) Assume that R is an integral domain. Let K = Frac(R). Then any
derivation D of R with values in K can be extended uniquely to a
derivation of K. Moreover, we have DR(K) ∼= DK(K).

Indeed. Let x, y ∈ R and y ̸= 0. DefineD(xy ) :=
yD(x)−xD(y)

y2
. Observe

that if x
y = x′

y′ , by definition we have D(xy ) = D(x
′

y′ ). It is easy to see

that the map D : K → K is a derivation. Uniqueness is immediately.

Example 1.5.2. (1) Let R be a ring and D be a derivation on R. Let
A = R[x1, . . . , xn]. For any

f =
∑

ci1,...,inx
i1
1 · · ·x

in
n ,
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define

fD =
∑

D(ci1,...,in)x
i1
1 · · ·x

in
n .

It gives a derivation of A.
(2) Let R′ be a ring and R = R′[x1, . . . , xn]. Define

Di =
∂

∂xi
: R→ R.

with

Di(c) = 0, ∀c ∈ R′,

Di(
∑

ck1,...,knx
k1
1 · · ·x

kn
n ) =

∑
ck1,...,knkix

k1
1 · · ·x

ki−1
n ) · · ·xknn ).

Di is a R′-derivation.
Di is uniquelly determinde by (1), (2) in Definition 1.5.2 and Di(c) =

0, ∀c ∈ R′, Di(xj) = δij.
(3) If R′ = k is a field and K = k(x1, . . . , xn). Then dimK DK|k = n and

D1, . . . , Dn form a basis for DK|k.

Indeed. Let D ∈ DK|k, we consider D′ :=
∑n

i=1D(xi)Di ∈ DK|k. It
is easy to see that D = D′. Hence DK|k = span(D1, . . . , Dn). It remains
to show that D1, . . . , Dn are linearly independent. Let λi ∈ K be such
that ∑

λiDi = 0.

Then

λj = (
∑

λiDi)(xj) = 0.

In fact, we have the following theorems.

Theorem 1.5.1 ([6] Ch.2, Sec.17, Thm41). Let K be a field, charK = 0.
Let F = K(x1, . . . , xn) by any f.g.extension of K. Then

tr.deg(F |K) = dimF (DF |K).

Corollary 1.5.3 ([6] Ch.2, Sec.17, Cor2′). Let K be a field. Let F |K by a
separable algebraic extension. Then any derivation of K can be extended to
a derivation of F in a unique way

Example 1.5.3. Consider the polynomial ring K[x1, . . . , xn] and its field
of fraction F = K(x1, . . . , xn). Then DF |K(F ) as vector space over F hase
basis D1, . . . , Dn.

Lemma 1.5.3. There exists a nonempty Zariski open subset Ũ ⊂ X s.t.
∀a ∈ Ũ , dimTaX = tr. deg(C(X)|C).

Proof. Let x̄1, . . . , x̄n be the classes of x1, . . . , xn in C(X) Then C(X) =
C(x̄1, . . . , x̄n) and it is f.g.over C. Then by Theorem 1.5.1,

tr. deg(C(X)|C) = dimC(X)DRX |C(C(X)) = dimC(X)DC[x1,...,xn]/(P+C)(C(X))
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where

DC[x1,...,xn]/(P+C)(C(X)) = {(λ1, . . . , λn) ∈ C(X) |
n∑

i=1

λiDi(f) = 0, ∀f ∈ P}

= {(λ1, . . . , λn) ∈ C(X) |
n∑

i=1

λi
∂

∂xi
(f) = 0, ∀f ∈ P}

And then the dimension of this set is n− rkC(X)(
∂fj
∂xi

).

Claim. There exists a nonempty Zariski open subset Ũ ⊂ X s.t.

rkC(X)(
∂fj
∂xi

) = rkC(
∂fj
∂xi

(a)), ∀a ∈ Ũ .

r := rkC(X)(
∂fj
∂xi

)

Indeed. By linear algebra we know that there exist A ∈ GLm(C(X))
and B ∈ GLn(C(X)) s.t.

A(
∂fj
∂xi

)B =

Ir 0

0 0


But we can write A = 1

αA0, B = 1
βB0 for some α, β ∈ RX and A0 ∈

Matm(RX) and B0 ∈ Matn(RX).

Let Ũ := {a ∈ X | α(a)β(a) det(A0(a)) det(B0a) ̸= 0}, which is a nonempty

Zariski open set. And for any a ∈ Ũ ,

1

α(a)
A0(a)(

∂fj
∂xi

(a))
1

β(a)
B0(a) =

Ir 0

0 0


Hence r = rkC(

∂fj
∂xi

(a)), ∀a ∈ Ũ . □

Now we give the proof of Proposition 1.5.1.

Proof. We have seen that there exists a nonempty Zariski open subset U ⊂
X s.t. ∀a ∈ U , dimTaX = min{dimTbX | b ∈ X}. Then by Lemma 1.5.2,

U ∩ Ũ ̸= ∅, where Ũ is as in the Lemma 1.5.3. □

1.6. Structure of affine varieties at smooth points.

Theorem 1.6.1 ([5], Thm 1.16, Cor 1.20).

(1) Let f1, . . . , fr ∈ C[x1, . . . , xn] without constant terms (fj(0) = 0, j =
1, . . . , r) and s.t. the linear parts are linearly independent

(
∂fj
∂x1

(0), . . . ,
∂fj
∂xn

(0), j = 1, . . . , r, are linearly independent.) De-
fine

P := {g ∈ C[x1, . . . , xn] |
∑r

j=1 hjfj

K
= g, hj ,K ∈ C[x1, . . . , xn], K(0) ̸= 0}.

Then P is a prime ideal and X := V (P ) is a variety of dimension
n− r and 0 ∈ X is a smooth point.
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Moreover, V (f1, . . . , fr) = X∪Y where Y is a closed algebraic set
s,t, 0 /∈ Y .

(2) Conversely, if X = V (P ) ⊂ Cn is an affine variety of dimension
n− r and a ∈ X is smooth. Then there exist f1, . . . , fr ∈ P s.t.

rk(
∂fj
∂xi

(a)) = r

and

P = {g ∈ C[x1, . . . , xn] |
∑r

j=1 hjfj

K
= g, hj ,K ∈ C[x1, . . . , xn], K(0) ̸= 0}.

Example 1.6.1. Again consider X = {(a3, a4, a5) | a ∈ C} = V (P ) ⊂ C3

where P = (xz−y2, x3−yz, x2y−z2). And it is easy to see that (1, 1, 1) ∈ X
is a smooth point. One can check that it satisfies (2) in Theorem 1.6.1.

1.7. The local ring of a point. Let R = C[x1, . . . , xn], P = (x1 −
a1, . . . , xn − an) where a = (a1, . . . , an) ∈ Cn. Here P is a maximal ideal.
OCn,a = RP is called the local ring a whose elements are rational functions
defined in some neighborhood of a.

Remark 1.12. If g ∈ C[x1, . . . , xn] is s.t. g(a) ̸= 0, then we can consider
g̃(y1, . . . , yn) := g(a1 + y1, . . . , an + yn) ∈ C[y1, . . . , yn] and then g̃(0) ̸= 0.
Then it as a inverse in the ring of formal power series

1

g̃(y)
=

∞∑
i1,...,in=0

ci1,...,iny
i1
1 · · · y

in
n ∈ C[[y1, . . . , yn]].

For example,

1

1−
∑
ciyi

= 1 +

∞∑
k=1

(
n∑

i=1

ciyi

)k

Hence we have OCn,a ⊂ C[[y1, . . . , yn]]. Then in a neighborhood of the
smooth point a, it is also a complex manifold in the Euclidean topology.

Now we consider the case of affine variety. Let X = V (P ) ∈ Cn be an
affine variety, a ∈ X. And let M̄a := (x̄1 − a1, . . . , x̄n − an). We can also
define OX,a := (RX)M̄a

the local ring of a ∈ X.

Remark 1.13. Note that Frac(OX,a) = C(X).

Proposition 1.7.1. RX = ∩a∈XOX,a in C(X).

Proof. (⊂) We have the map f 7→ f
1 ∈ OX,a, ∀a ∈ X.

(⊃) Let u ∈ ∩a∈XOX,a. Let I := {h ∈ C[x1, . . . , xn] | h̄u ∈ RX} where h̄
is the class of h in RX . Note that I is an ideal and P ∈ I.

For any a ∈ X, since u ∈ ∩a∈XOX,a can be expressed as

u =
f

g
, g(a) ̸= 0.
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Hence g ∈ I. But g(a) ̸= 0, if follows that a /∈ V (I). And since P ⊂ I, we

have V (I) ⊂ X and V (I) = ∅. By Theorem 1.2.1, 1 ∈
√
I. Therefore,

1 ∈ I and u = 1 · u ∈ RX □

1.8. Power series expansions. In this section we introduce the local pa-
rameters at a (smooth) point.

Let X = V (P ) be an affine variety with P = (f1, . . . , fm) ⊂ C[x1, . . . , xn]
prime. For a ∈ X, we denote M̄a := (x̄1 − a1, . . . , x̄n − an) the maximal
ideal of a. In the local ring OX,a = (RX)M̄a

, define ma := φ(M̄a · OX,a) the

maximal ideal of OX,a, where φ : RX → OX,a with φ(f̄) = f̄
1 .

Let D ∈ DerRX ,a. Then D can be extended to the DerOX,a,a in a unique

way by setting D( f̄ḡ ) :=
ḡ(a)D(f̄)−f̄(a)D(ḡ)

ḡ(a)2
. Note that D(m2

a) = 0. D induces

a C-linear map d ∈ (ma/m
2
a)

∗ : ma/m
2
a → C.

Theorem 1.8.1. The map

DerRX ,a → (ma/m
2
a)

∗

D 7→ d

is a C-linear isomorphism.

Proof. Linearity is immediately by construction.
(Inj). Let the image of D be 0, then D|ma = 0. D induces a C-linear map

OX,a/ma(∼= C)→ C. By Leibniz, D = 0.
(Surj). Let δ ∈ (ma/m

2
a)

∗. Define D : RX → C by D(f̄) := δ(φ(f̄−f̄(a))).
”standard calculation”
Hence D ∈ DerRX ,a and its image is δ. □

Remark 1.14. (1) ∀a ∈ X, dimCma/m
2
a = dimC TaX <∞.

(2) From Exer.6, Assignment 1,

DerRX ,a → Cn

D 7→ (D(x̄1), . . . , D(x̄n))

is injective and C-linear. Moreover,

D(f̄) =

n∑
i=1

∂f

∂xi
(a)D(x̄i).

Now identify D ∈ DerRX ,a with its image d ∈ (ma/m
2
a)

∗. Let ū ∈ ma/m
2
a.

Then

d(ū) = D(u) =
n∑

i=1

∂u

∂xi
(a)D(x̄i).

where u is any representative of ū in ma.

Definition 1.8.1. Let r = dimX. and Let a ∈ X be a smooth point.
u1, . . . , ur ∈ OX,a are called local parameters at a if u1, . . . , ur ∈ ma and
their classes ū1, . . . , ūr ∈ ma/m

2
a form a basis of ma/m

2
a. And ma/m

2
a is called

the cotangent space of X at a.
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Remark 1.15. If u1, . . . , ur ∈ OX,a are local parameters at a, then rk(
∂uj

∂xi
(a)) =

r.

Example 1.8.1. Let X = V (x2 + y2 − 1) ⊂ C2, a = (0, 1). Then TaX =
{(x, y) | y = 1}. x ∈ ma is a local parameter since dx|ma/m2

a
. y − 1 ∈ ma is

not a local parameter since D(ȳ) = 0, ∀D ∈ DerRX ,a and ∂y−1
∂x (a)D(x̄) +

∂y−1
∂y (a)D(ȳ) = 0.

Lemma 1.8.1 (Nakayama). Let R be a ring and M be a f.g. R-module.
Let I ⊂ R be an ideal. Then IM =M ⇔ ∃x ∈ 1 + I s.t. xM = 0.

In particular, if ∀x ∈ 1 + I is invertible(e.g. I is maximal), then IM =
M ⇔M = 0.

Proof. (⇐). Clear.
(⇒). Let v1, . . . , vn ∈ M be generators of M . IM = M implies that

∃aij ∈ I, 1 ≤ i, j ≤ n s.t. −vi =
∑

j aijvj . Then we have (A + In)v = 0,

where A = (aij), In is the identity matrix and v = (v1, . . . , vn)
T . Then by

multplying the classical adjoint matrix of A+I(classical adjoint matrix S∗ of
matrix S is s.t. SS∗ = (detS)I with I the identity). (A+In)

∗(A+In)v = 0.
But (A+ In)

∗(A+ In) = det(A+ In)In. And det(A+ In) = 1 + d for some
d ∈ I. Hence (1 + d)vi = 0, ∀i = 1, . . . , n. Then (1 + d)M = 0 □

Corollary 1.8.1. Let R as before. Let I ⊂ R be an ideal s.t. every element
in 1+I is invertible. LetM be a f.g. R-module andM ′ ⊂M be a submodule.
Then

M = IM mod M ′ ⇐⇒ M ′ =M.

In particular, v1, . . . , vn ∈ M generate M ⇐⇒ their classes v̄1, . . . , v̄n ∈
M/IM are generators.

Proof. Applying Lemma 1.8.1 toM/M ′. Note thatM = IM mod M ′ ⇐⇒
IM/M ′ = M//M ′. By Lemma 1.8.1, it is equivalent to ∃x ∈ 1 + I s.t.
xM/M ′ = 0. But x is invertible. Therefore M/M ′ = 0.

For the last statement, let M ′ := span(v1, . . . , vn). □

Remark 1.16. In particular, if u1, . . . , ur ∈ ma are local parameters, then
ma = (u1, . . . , ur).

Let u1, . . . , ur ∈ OX,a be local parameters, where a ∈ X is a smooth
point. For any v ∈ OX,a, define v(1) := v−v(a) ∈ ma. Then ∃λ1, . . . , λr ∈ C
s.t.

v(1) − λ1u1 − · · · − λrur ∈ m2
a.

Let v(2) := v(1) −
∑
λiui ∈ m2

a. We can write v(2) =
∑
wkxk for some

wk, xk ∈ ma

Again ∃µki, νki ∈ C s.t.

wk −
∑
i

µkiui, xk −
∑
i

νki − ui ∈ m2
a.
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Hence

v(2) =
∑
k

(∑
i

µkiui +m2
a

)(∑
i

νkiui +m2
a

)
=
∑
k,l

γk,lukul +m3
a.

By repeating this procedure, we can construct homogeneous polynomial
v(l) ∈ C[t1, . . . , tr] of degree l for any l ∈ N s.t.

v =

k∑
l=0

v(l)(u1, . . . , ur) +mk+1
a .

Definition 1.8.2. The formal power series ring in t = (t1, . . . , tr) is the
ring C[[t]] = C[[t1, . . . , tr]] whose elements are infinite sum of the form

Φ = F1 + F2 + · · ·

where Fi ∈ C[t1, . . . , tr] is homogeneous of degree i.
And the operations are the following. Let Ψ =

∑
Hi.

Φ + Ψ =
∑
i

Fi +Hi

Φ ·Ψ =
∑
i≥0

(
∑

j+k=i

HjFk)

Remark 1.17. (1) We can replace C by any other field.
(2) C ⊂ C[[t]].
(3) C[[t]] is an integral domain.

Definition 1.8.3. Let u ∈ OX,a with a smooth point. Let u1, . . . , ur be
local parameters at a. A Taylor series for u is Φ =

∑
Fi ∈ C[[t1, . . . , tr]]

s.t.

u−
k∑

i=0

Fi(u1, . . . , ur) ∈ mk+1
a , ∀k.

Example 1.8.2.

(1) X = C, a = 0, ma = (x). Then ∀fg ∈ OX,a has a unique Taylor series∑
i≥0 λix

i with f
g −

∑k
i=0 λix

i ∈ (xk+1).

(2) 1
1−x =

∑
i≥0 x

i.

Theorem 1.8.2 (Weierstrass Preparation Theorem, [7],p139(simplified ver-
sion)). Let Φ =

∑n
i=1 aixi+ higher order terms. Assume that a1 ̸= 0. Then

for any Ψ ∈ C[[x1, . . . , xn]], there are unique A,B ∈ C[[x1, . . . , xn]] s.t.
Ψ = AΦ+B.

Corollary 1.8.2. C[[x1, . . . , xn]]/(Φ) = C[[x2, . . . , xn]]
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Theorem 1.8.3. ∀u ∈ OX,a with a smooth point. Let u1, . . . , ur be local
parameters at a. There exists a unique Taylor series of u. Consequently, we
have a injective morphism

τ : OX,a → C[[t1, . . . , tr]]
u 7→ τ(u)

where τ(u) is the Taylor series of u.

Proof. It is sufficient to prove the following claim.
Claim. If Fk ∈ C[t1, . . . , tr] is homogeneous of degree k and Fk(u1, . . . , ur) ∈

mk+1
a , then Fk = 0.
Indeed. We prove the claim in two steps.
Step 1. Consider the case thatX = Cn, r = n, u1 = x1−a1, . . . , un = xn−

an, ma = (x1−a1, . . . , xn−an). Thenmk
a = {

∏n
i=1(xi−ai)mi |

∑n
i=1mi = k}.

In this case, if Fk(x1 − a1, . . . , xn − an) ∈ mk+1
a , Fk = 0.

Step 2. Now we consider the general case that X = V (P ) with P prime.
Assume, WLOG, that a = 0. We have

f
g = 0 iff

Hence the map OCn,0/POCn,0 → OX,0 is an isomorphism. We have the
following commutative diagram.

It easy to see that OCn,0/POCn,0 → C[[x1, . . . , xn]]/PC[[x1, . . . , xn]] is in-
jective. It remains to show that C[[x1, . . . , xn]]/PC[[x1, . . . , xn]] ∼= C[[y1, . . . , yr]].

By Theorem 1.6.1, there exist f1, . . . , fn−r ∈ C[x1, . . . , xn] s.t. POCn,0 =

(f11 , . . . ,
fn−r

1 ) and PC[[x1, . . . , xn]] = (f1, . . . , fn−r)C[[x1, . . . , xn]].
If fi =

∑n
j=1 aijxj+ h.o.t, then rk(aij) i=1,...,n−r

j=1,...,n
= rk( ∂fi∂xj

) = n−r. And up

to a linear change of coordinates we can assume that rk(aij)1≤i,j≤n−r = n−r.
By Theorem 1.8.2,

C[[x1, . . . , xn]]/PC[[x1, . . . , xn]] ∼= C[[xn−r+1, . . . , xn]].

Consider u1, . . . , ur ∈ C[[y1, . . . , yr]], then ui =
∑r

j=1 bijyj with bij ∈
C[[y1, . . . , yr]]. Set B := (bij) ∈ Matr(C[[y1, . . . , yr]]). detB(0) ̸= 0 since
u1, . . . , ur form a basis of m0/m

2
0 and also y1, . . . , yr form a basis of m0/m

2
0.

There exists B−1 = det(B)−1B∗. Hence C[[u1, . . . , ur]] ∼= C[[y1, . . . , yr]]).
The claim follows from Step 1.

Now we have the morphism

τ : OX,a → C[[t1, . . . , tr]]
u 7→ τ(u).

Let u ∈ OX,a be such that τ(u) = 0. Then u ∈ mk
a, ∀k. Hence u ∈ ∩k≥0m

k
a.

But ma(∩k≥0m
k
a) = ∩k≥0m

k
a. Then by Lemma 1.8.1, ∩k≥0m

k
a = 0, hence

u = 0. Therefore, the morphism is injective. □

Remark 1.18. (Formal Implicit Function theorem) Let Φ =
∑n

i=1 aixi+
higher order terms ∈ C[[x1, . . . , xn]] s.t. a1 ̸= 0. Then by Theorem 1.8.2,
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there exist A ∈ C[[x1, . . . , xn]] and B ∈ C[[x2, . . . , xn]] s.t. x1 = AΦ + B
Note that A(0) ̸= 0, then Φ = (x1 −B)A−1.

1.9. Analytic structure of smooth point.

Definition 1.9.1 ([2]). A complex manifold of complex dimension n is a
Hausdorff and 2nd countable topological space M together with a holomor-
phic atlas A = {(Uα, φα) | α ∈ A}. i.e. M = ∪αUα with Uα ⊂M open and
φα ◦ φ−1

β : φβ(Uα ∩ Uβ) → φα(Uα ∩ Uβ) is holomorphic. And a homeomor-

phism ϕUα → Vα for some Vα ⊂ Cn open.

Remark 1.19. By φα ◦ φ−1
β holomorphic we mean that it is C0 and satisfies

the Cauchy-Riemann equations, which is

Theorem 1.9.1. If X ⊂ Cn is an affine variety of dimension r. Let U ⊂ X
be the set of smooth points. Then U is a complex manifold of dimension r.

1.10. OX,a is a UFD. 2

Proposition 1.10.1 ([4], Appendix 7). Suppose R is a Noetherian ring with

maximal ideal M . Let R̂ ⊃ R with maximal ideal M̂ be a local ring, which
is a UFD. If the following conditions are satisfied:

(1) MR̂ = R̂,

(2) (MnR̂) ∩R =Mn, ∀n > 0,

(3) ∀x ∈ R̂ and ∀n > 0, ∃xn ∈ R s.t. x− xn ∈MnR̂ = M̂n,

then R is a UFD.

Theorem 1.10.1. Let X be an affine variety of dimension r and a ∈ X be
a smooth point. Then OX,a is a UFD.

Proof. (Sketch). We have seen that OX,a ⊂ C[[t1, . . . , tr]].
We use the fact that C[[t1, . . . , tr]] is a UFD.(see details in [7]). Denote

ÔX,a := C[[t1, . . . , tr]] with maximal ideal m̂a.
We prove by check the conditions in Proposition 1.10.1.

(1) (⊂) Clear.
(⊃) If u1, . . . , ur ∈ OX,a are local parameters, then τ(ui) = ti, ∀i =
1, . . . , r. Let Φ ∈ m̂a, then

Φ =

r∑
i=1

φiti, φi ∈ ÔX,a.

Then Φ =
∑r

i=1 φiτ(ui) ∈ maÔX,a

(2) (⊃) Clear.
(⊂) Let Φ ∈ (mn

aÔX,a)∩OX,a = m̂n
aOX,a. Since Φ ∈ R, Φ = τ(u). Since

Φ ∈ m̂n
a , u ∈ On

X,a.

(3) Clear.

□

2This part is a bit of mess. I will try to rewrite it in a more readable way.



20 ZIWEI WEI

Remark 1.20. In general, RX is not a UFD. (e.g. X = V (x2 + y2 − 1))

Corollary 1.10.1 (Geometric interpretation of UFD). Let X = V (P ) with
P ∈ C[x1, . . . , xn] prime. Let r = dimX and let a ∈ X be a smooth point.
If f ∈ C[x1, . . . , xn] is such that

f̄

1
∈ OX,a is irreducible,

then

P ′ := {g ∈ C[x1, . . . , xn] | kg ∈ P + (f), kC[x1, . . . , xn], k(a) ̸= 0 ∈}
is a prime ideal and X ′ := V (P ′) ⊂ X is an affine variety of dimension
r − 1. Such X ′ is called a subvariety of X of codimension 1. Moreover,
every subvariety of X of codimension 1 is of this form. In this situation,
f̄
1 ∈ OX,a is called a local equation of X ′ at a.

Proof. Let ψ be the composition of the following maps

C[x1, . . . , xn]→ RX → OX,a.

quotient map, φ : h̄ 7→ h̄
1 . Then P

′ = ψ−1( f̄1 ).

Since OX,a is a UFD and f̄
1 is irreducible, ( f̄1 ) is prime. Hence ψ−1( f̄1 ) is

prime.
Let X ′ := V (P ′). Note that X ′ & X. So dimX ′ < dimX = r. But

TaX
′ = {(x1, . . . , xn) ∈ Cn |

n∑
i=1

∂h

∂xi
(a)(xi − ai) = 0, ∀h ∈ P ′}

= {(x1, . . . , xn) ∈ TaX |
n∑

i=1

∂f

∂xi
(a)(xi − ai) = 0}.

Therefore dimTaX
′ ≥ dimTaX − 1 = r − 1. We can assume WLOG that a

is also a smooth point of X ′ since smooth points form a Zariski open subset.
Then we have

r − 1 ≤ dimX ′ < r.

Conversely, let a ∈ X ′ be such that a is a smooth point of X. Let
P ′ = I(X ′) ⊂ C[x1, . . . , xn]. Then ψ(P ′)OX,a ⊂ OX,a and it is a prime

ideal. Let f̄
ḡ ∈ ψ(P ′)OX,a \ {0}, can assume f̄

ḡ is irreducible. Consider

ψ−1( f̄1 ) ⊂ C[x1, . . . , xn]. Since f̄ is irreducible, we have

X ′ ⊂ V (ψ−1(
f̄

1
)) & X,

and hence r−1 ≤ dimV (ψ−1( f̄1 )) < r. Finally we haveX ′ = V (ψ−1( f̄1 )). □

Remark 1.21. Consider X = C, then RX = C[X]. Every f ∈ RX is deter-
mined (up to scalar multiple) by its zeros.

Can write f as f = c(x − z1)µ1 · · · (x − zk)µk . Then f is determined by
(zi, µi), i = 1, . . . , k.
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Let Div(X) be the free abelian group generated by the set of all points of
X, which is

Div(X) := {f : X → Z | | supp f | <∞}.
The elements have the form of formal sum

∑k
i=1 µizi ↔ f : X → Z, f(x) =

µi if x = zi.
Moreover, if f

g ∈ C(x) = C(X) with

f = c

k∏
i=1

(x− zi)µi , zi ̸= zj if i ̸= j,

g = c′
m∏
j=1

(x− wj)
νj , wj ̸= wl if j ̸= l,

then

f

g
7→

k∑
i=1

µizi −
m∑
j=1

νjwj .

It is a bijection if RX is a UFD.

Now we consider a more general case.

Definition 1.10.1. Let X be any affine variety. Let Z be the set of subvari-
eties of X of codimension 1. We define Div(X) as the free abelian group gen-
erated by Z. (Div(X) := {f,Z → Z | f(Z) ̸= 0, for finitely many Z ∈ Z})

Div(X) is called the group of divisors of X.

Remark 1.22. Note that any f ∈ Div(X) can be written as the formal sum∑
Z∈Z f(Z)Z. Conversely, any formal sum

∑N
i=1 µiZi correspondes to such

an f ∈ Div(X).

Elements Z ∈ Z are said to be prime divisors.
Now assume that X is smooth. Let f ∈ RX \ 0 and Z ∈ Z. For a ∈ Z,

consider a local equation h
1 ∈ OX,a of Z at a. Consider f

1 ∈ OX,a. Define

ordZ(f) := µ s.t. (h1 )
µ|f1 but (h1 )

µ+1 ∤ f
1 . Note that ordZ(f) doesnot depend

on a ∈ Z. In fact, ordZ(f) does not depend on a ∈ Z.
So we get a map

f 7→ div(f) :=
∑
Z∈Z

ordZ(f)Z ∈ Div(X).

More generally, ∀ f̄ḡ ∈ C(X), we can define

div(
f̄

ḡ
) := div(f̄)− div(ḡ) ∈ Div(X)

and such element is called the principal divisor.

Definition 1.10.2. Consider div( f̄ḡ ) =
∑

Z∈Z nZZ ∈ Div(X). If nZ > 0,

we call Z a zero for f̄
ḡ . If nZ < 0, we call Z a pole for f̄

ḡ .
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Remark 1.23. Let P (X) := the principal divisors. Note that P (X) ⊂
Div(X) is a subgroup.

Definition 1.10.3. Let X be a smooth affine variety. The quotient group

Cl(X) := Div(X)/P (X)

is called the divisor class group or Picard group of X.

Remark 1.24. One can prove that in this smooth case, the general definition3

of Picard group is the same as the definition above.

Proposition 1.10.2. Cl(X) = {0} ⇐⇒ RX is UFD.

Remark 1.25. Compare with X = C, we have

D =
∑
z∈C

nzz = div

 ∏
z∈C
nz>0

(x− z)nz∏
z∈C
nz<0

(x− z)−nz

 .

1.11. Morphisms between affine varieties.

Definition 1.11.1. Let X = V (P ) ∈ Cn and Y = V (Q) ⊂ Cm be two affine
varieties. A regular map or morphism between X and Y is a function

φ = (φ1, . . . , φm) : X → Y

s.t. with φj : X → C in RX (i.e. φ1, . . . , φm are restrictions to X of
polynomials in C[x1, . . . , xn]).
Definition 1.11.2. Let φ = (φ1, . . . , φm) : X → Y be a regular map and
a ∈ X, we have the differential of φ at a

daφ : TaX → Tφ(a)Y

(ξ1, . . . , ξn) 7→ (
n∑

i=1

∂φ1

∂xi
(a)(ξi − ai) + φ1(a), . . . ,

n∑
i=1

∂φm

∂xi
(a)(ξi − ai) + φm(a)).

Remark 1.26. (Exer.) One can check that the differential is well defined by
using chain rule.

Let φ = (φ1, . . . , φm) : X → Y be a regular map. It induces a ring
homomorphism

φ∗ : RY → RX

f̄ 7→ f̄ ◦ φ.
Definition 1.11.3. A regular map φ = (φ1, . . . , φm) : X → Y is called

dominant if Y = φ(X).

Proposition 1.11.1. Let φ : X → Y be a dominant regular map between
affine varieties. Then φ∗ : RY → RX induces a homomorphism

φ∗ : C(Y )→ C(X).

In particular, dimX ≥ dimY .

3isomorphism classes of line bundles(or invertible sheaves)
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Proof. Note that if g ∈ RY \ 0, then φ∗(g) ̸= 0, otherwise φ(X) ⊂ {b ∈
Y | g(b) = 0} & Y . Then φ(X) ̸= Y , contradiction. Hence we can define

φ∗(fg ) :=
f◦φ
g◦φ ∈ C(X)) and it is a homomorphism. □
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1.12. Appendix. primary decomposition. Now We recall some com-
mutative algebra [6].

Definition 1.12.1. Let R be a ring and I ⊂ R be an ideal of R. I is called
primary if whenever a, b ∈ R are such that ab ∈ I and a /∈ I, then b ∈

√
I.

We have immediately that the radical of a primary ideal is prime.

Theorem 1.12.1 (Lasker-Noether decomposition theorem).

(1) Let R be a Noetherian ring, then every ideal I ⊂ R admits the so called
primary representation as

I = Q1 ∩ · · · ∩QN

where Qi’s are primary ideals of R.
Moreover, we can find Q1, . . . , QN s.t.no Qi contains

⋂
j ̸=iQj and

the associated prime ideals
√
Q1, . . . ,

√
Qn are distinct. In this case it is

called irredundant primary representation.
(2) Let R be a ring and I ⊂ R be an ideal that admits an irredundant

primary representation

I = Q1 ∩ · · · ∩QN .

Then I =
√
I iff Q1, . . . , QN are prime.

Theorem 1.12.2. Let R be a ring and I ⊂ R be an ideal admitting an
irreduandant primary representation

I = Q1 ∩ · · · ∩QN .

Then the prime ideals Pi :=
√
Qi are uniquely determined by I. And they

are called the associated primes of I.

Example 1.12.1. Let I = (x2, y) ⊂ C[x, y] be an ideal. It has an irreduan-
dant primary representation

I = (x2) ∩ (y).

And its radical is √
I = (x) ∩ (y).

More generally, let f ∈ C[x1, . . . , xn] and write f = gk11 · · · g
kN
N where gi

are irrd and not associated to each other. Then we have

(f) = (gk11 ) ∩ · · · ∩ (gkNN ).

And its radical is √
(f) = (g1) ∩ · · · ∩ (gN ) = (g1 · · · gN ).

Example 1.12.2. Let k be any field. Consider the polynomial ring k[x, y]
and ideal I = (x2, xy). Then for any c ∈ k,

I = (x) ∩ (y − cx, x2)
is an irredundant primary representation of I.



ALGEBRAIC GEOMETRY 25

Question 1.12.1. What are the associated primes of I?

Corollary 1.12.1. Let I ⊂ C[x1 . . . , xn] be a radical ideal. Then there exists
unique prime ideals P1, . . . , PN ⊂ C[x1 . . . , xn] s.t.

I = P1 ∩ · · · ∩ PN

and Pi ̸= Pj , ∀i ̸= j.

1.13. Appendix. transcendental extension.

Definition 1.13.1. An extension K|k is transcendental if it is not alge-
braic(i.e. if ∃α ∈ K not algebraic over k).
Example 1.13.1. (1) Q(π)|Q is transcendental.
(2) Q(i)|Q is algebraic.
(3) Let k be any field and K be the fraction field of k[x1, . . . , xn], which is

K = k(x1, . . . , xn). Then K|k is transcendental.

Definition 1.13.2. Let K|k be a field extension. Let L ⊂ K. The elements
of L are said to be algebraically independent over k if ∀α1, . . . , αN ∈ L,
there is no f ∈ k[x1, . . . , xn] s.t. f(α1, . . . , αN ) = 0. In this case, L is called
a transcendental set over k.
Definition 1.13.3. A transcendental basis for K|k is a transcendental
set L ⊂ K over k that is not contained in any bigger transcendental set.

Remark 1.27. L ⊂ K is a transcendental basis forK|k iffK|k(L) is algebraic.
Example 1.13.2. {x1, . . . , xn} ∈ k(x1, . . . , xn) form a transcendental basis
for k(x1, . . . , xn)|k.
Theorem 1.13.1. There exists a transcendental basis for any field exten-
sion. Moreover, any two transcendental basis have the same cardinality.

See Chapter II Sec.12 in [6] for the proof.

Definition 1.13.4. The cardinality of any transcendental basis for K|k is
called the transcendental degree of K|k, denoted by tr.deg(K|k).
Remark 1.28. tr.degR|Q = tr. degC|Q =∞
1.14. Appendix. Localization.

Definition 1.14.1. Let R be a ring and P ⊂ R be a prime ideal. The
localization of R at P is

RP := {(f, g) ∈ R×R | g /∈ P}/
where (f, g) (f ′, g′) iff ∃h /∈ P s.t. (fg′ − gf ′)h = 0.

One may view the element (f, g) ∈ RP as “f
g ”.

We have a morphism

φ : R→ RP

f 7→ f

1
.
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And ∀f ∈ R \ P , φ(f) is invertible. More generally, f
g is invertible in RP if

f /∈ P and (fg )
−1 = g

f .

Let m := {fg | f ∈ P}. It is a (unique) maximal ideal of RP and (RP ,m)

is a local ring.

Remark 1.29. If R is an integral domain then so is RP .

Proposition 1.14.1. If R is Noetherian, then so is RP .

Proof. Let I ⊂ RP be an ideal and Ī := φ−1(I) ⊂ R. Since R is Noetherian,
Ī = (f̄1, . . . , f̄m) for some f̄i ∈ R.

Let u ∈ I, then u = f
g and gu = f ∈ I. Then gu = φ(f). Hence

f ∈ Ī. It follows that f =
∑
hif̄i. Then gu =

∑
φ(hi)φ(f̄i). Hence

u ∈ (φ(f̄1), . . . , φ(f̄m)). □

2. Projective Varieties

2.1. Projective Space. We first define the projective space in our setting.

Definition 2.1.1. We define the complex projective n-space by Pn := Cn+1\
{0}/ ∼, where (a0, . . . , an) ∼ λ(a0, . . . , an) for some λ ∈ C×

For (a0, . . . , an) ∈ Cn+1, we denote its equivalence class in Pn by [a0 :
· · · : an] and it is called the homogeneous coordinates of the cooresponding
point.

Remark 2.1. There are also several other equivalent definitions, e.g.

Pn = {L ⊂ Cn+1 | dimC L = 1}.

Remark 2.2. Let π : Cn+1 \ {0} → Pn by the quotient map, π(a0, . . . , an) =
[a0 : · · · : an]. The Euclidean topology induces the quotient topology on Pn,
called the classical topology.

Pn is compact w.r.t. the classical topology and moreover, it is Hausdorff.

One can view Pn as the compactification of Cn.
For any i = 0, . . . , n, define Hi := {[a0 : · · · : an] | ai = 0} and Ui :=

Pn \Hi. Then consider the map

ϕi : Ui → Cn

[a0 : · · · : an] 7→ (
a0
ai
, . . . ,

an−1

ai
,
an+1

ai
, . . . ,

an
ai

).

It is easy to see that ϕi is bijective with inverse

ϕ−1
i : Cn → Ui

(z0, . . . , zn) 7→ [z1 : · · · : zi : 1 : zi+1 : · · · : zn]

Remark 2.3. ϕ, ϕ−1 are continuous w.r.t. the classical topology. And A :=
{(Ui, ϕi) | i = 0, . . . , n} is a topological atlas of Pn.

If j < i, ϕj ◦ ϕi−1 is holomorphic on Cn \ {zj+1 = 0} = ϕj(Ui ∩ Uj). In
particular, A is a holomorphic atlas and then Pn is a complex manifold.
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It follows that Pn = Cn ⊔Hi = Cn ⊔ Pn−1 = Cn ⊔ Cn−1 ⊔ · · · ⊔ C0.

Remark 2.4. Hi is called “the point at ∞”.

Definition 2.1.2. A closed algebraic set in Pn is a subset Pn of the form

V (f1, . . . , fm) = {[a0 : · · · : an] | fj(a0, . . . , an) = 0, j = 1, . . . ,m}

where f1, . . . , fm ∈ C[x0, . . . , xn] are homogeneous.

Remark 2.5. We could have required every f ∈ C[x0, . . . , xn](not necessarily
homogeneous) to be

f(λa0, . . . , λan) = 0, ∀λ ∈ C×.

We can write f =
∑

k f(k) where f(k) are the homogeneous components of
degree k. Then the condition above is equivalent to

f(k)(a0, . . . , an) = 0, ∀k.

Proposition 2.1.1. Let f1, . . . , fm ∈ C[x0, . . . , xn] be homogeneous. Let
I = (f1, . . . , fm) ⊂ C[x0, . . . , xn]. Then I is an homogeneous ideal(i.e. ∀f ∈
I, its homogeneous components f(k) ∈ I ).

Conversely, if I ⊂ C[x0, . . . , xn] is a homogeneous ideal, then there exist
f1, . . . , fm ∈ C[x0, . . . , xn] homogeneous s.t. I = (f1, . . . , fm).

Proof. Let g =
∑m

i=1 hifi ∈ I. Then the homogeneous components of g are

g(k) =
m∑
i=1

h(k−deg fi)fi ∈ I, ∀k.

Conversely, if I is homogeneous. Take generators I = (f1, . . . , fm), then
(fi)(k) ∈ I, ∀i, k. Then I = ((f1)(k), . . . , (fm)(k) | ∀k ≥ 0). □

Lemma 2.1.1. Let I ⊂ C[x0, . . . , xn] be an ideal. For any λ ∈ C×, set
Iλ := {fλ = f(λx0, . . . , λxn) | f ∈ I}. Then

I is homogeneous ⇐⇒ I = Iλ, ∀λ ∈ C×.

Proof. (⇒) (⊂) Write f = (f
1
λ )λ. If I is homogeneous, then f

1
λ ∈ I, ∀f ∈

I, λ.
(⊃) Let fλ ∈ Iλ, f ∈ I. Write f =

∑
f(k). Since I is homogeneous,

f(k) ∈ I. Then λkf(k) ∈ I. It follows that fλ =
∑
λkf(k) ∈ I.

(⇐) Let f ∈ I. Write f =
∑
f(k). Then fλ =

∑
λkf(k) ∈ I. Let

d := deg f = max{k | f(k) ̸= 0}. Let λ0, . . . , λd ∈ C× be such that

∏
i<j

(λj − λi) =


1 λ0 · · · λd0
...

...
. . .

...

1 λd · · · λdd

 ̸= 0
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Then we have
fλ0

...

fλd

 =


1 λ0 · · · λd0
...

...
. . .

...

1 λd · · · λdd



f(0)
...

f(d)

 ∈ I⊕d+1

.
Therefore 

f(0)
...

f(d)

 =


1 λ0 · · · λd0
...

...
. . .

...

1 λd · · · λdd


−1

fλ0

...

fλd

 ∈ I⊕d+1

and f(k) ∈ I, ∀k.
□

Proposition 2.1.2. Let I ⊂ C[x0, . . . , xn] be a homogeneous ideal. Let√
I = P1 ∩ · · · ∩ PN be the irredundant primary representation. Then√
I, P1, . . . , PN are homogeneous.

Proof. By Lemma 2.1.1, if I is homogeneous, then I = Iλ, ∀λ. Hence√
I =
√
Iλ. We have that

√
I is homogeneous.

Moreover,
√
Iλ =

√
I = P1 ∩ · · · ∩ PN is an irredundant primary repre-

sentation of
√
Iλ. Hence

(
√
I)λ = P λ

1 ∩ · · · ∩ P λ
N , ∀λ.

And for any i = 1, ..., N there is a j such that P λ
i = Pj for infinitely many

{λi}i≥1. Then P
λkλ

−1
1

i = Pi for every k.

Hence
√
I, Pi are all homogeneous. □

2.2. Projective Varieties. We have the following results which are similar
with the affine case.

Proposition 2.2.1. Let I1, I2, Iα ⊂ C[x0, . . . , xn], α ∈ A be homogeneous
ideals. Then

(1) If I1 ⊂ I2, then V (I2) ⊂ V (I1),
(2) V (I1) ∪ V (I2) = V (I1 ∩ I2) = V (I1 · I2) (I1I2 = {fg|f ∈ I1, g ∈ I2}),
(3) V (

∑
α∈A Iα) =

⋂
α∈A V (Iα),

(4) V (
√
I) = V (I)

(
√
I = {f ∈ C[x1, . . . , xn] | fK ∈ I for some K > 0}).

Remark 2.6. FromProposition 2.2.1, if
√
I = P1∩· · ·∩PN is an irredundant

primary representation, then

V (
√
I) = V (P1) ∪ · · · ∪ V (PN ).

Since Pi ̸= Pj if i ̸= j, V (Pi) ̸= V (Pj).
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Definition 2.2.1. The Zariski topology in Pn is the topology whose closed
subsets are the closed algebraic set in Pn.

Definition 2.2.2. A projective variety is an non-empty set X ⊂ Pn of
the form X = V (P ) for some homogeneous prime ideal P ⊂ C[x0, . . . , xn].

In this case, RX : C[x0, . . . , xn]/P is the homogeneous coordinate
ring of X.

Remark 2.7. Let f ∈ C[x0, . . . , xn] be homogeneous. In general, it doesn’t
define a “function” X → C.
Remark 2.8. If I & C[x0, . . . , xn] is a homogeneous ideal, then I ⊂ (x0, . . . , xn).

Note that V (x0, . . . , xn) = ∅.

Theorem 2.2.1 (Hilbert’s Nullstellensatz). Let I ⊂ C[x0, . . . , xn] be a ho-
mogeneous ideal. Let f ∈ C[x0, . . . , xn] be homogeneous of degree deg f ≥ 1.

If f(a) = 0, ∀a ∈ V (I), then f ∈
√
I.

Proof. Case I. If V (I) = ∅, then {a ∈ Cn+1 | g(a) = 0, ∀g ∈ I} is either
empty or {0}. If it is empty, then I = C[x0, . . . , xn] and by Theorem 1.2.1,

f ∈
√
I. If it is {0}, then again by Theorem 1.2.1,

√
I = (x0, . . . , xn).

Since deg f ≥ 1, f ∈
√
I.

Case II. If V (I) ̸= ∅, then {a ∈ Cn+1 | g(a) = 0, ∀g ∈ I} = π−1(V (I))∪
{0} where π : Cn+1\{0} → Pn is the quotient map. Then byTheorem 1.2.1,

f(a) = 0, ∀a ∈ π−1(V (I)) ∪ {0} implies that f ∈
√
I. □

Remark 2.9. We don’t have I(V (J)) =
√
J in the projective setting.

Remark 2.10. Let I ⊂ C[x0, . . . , xn] be a homogeneous ideal. The set C :=
{a ∈ Cn+1 | g(a) = 0, ∀g ∈ I} is a cone and it is called the affine cone of
V (I).

Corollary 2.2.1. Let I ⊂ C[x0, . . . , xn] be a homogeneous ideal. Then

V (I) = ∅ (in Pn) ⇐⇒
√
I = C[x0, . . . , xn] or

√
I = (x0, . . . , xn)

Proposition 2.2.2. For i = 0, . . . , n, let

ϕi : Ui = Pn \Hi → Cn

[a0 : · · · : an] 7→ (
a0
ai
, . . . ,

âi
ai
, . . . ,

an
ai

).

Then ϕi is an homeomorphism w.r.t the Zariski topology.
Moreover,

(1) If P ⊂ C[x0, . . . , xn] is a homogeneous prime ideal, X = V (P ), then
ϕi(X \ (X ∩ Hi)) = ϕi(X ∩ Ui) = V (P ′) with P ′ = {f(y1, . . . , 1i −
th, . . . yn) | f ∈ P} ⊂ C[y1, . . . , yn] is an affine variety.

(2) Conversely, if Q′ ⊂ C[y1, . . . , yn] is a prime ideal, then

ϕ−1
i (V (Q′)) = V (Q)

where Q is generated by the set {xdi g(
x0
xi
, . . . , x̂i

xi
, . . . , xn

xi
) | g ∈ Q′, d =

deg g}.
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Proof. Consider the case i = 0 (other cases are similar). Consider the maps
α, β.
Defined by

α : f(x0, . . . , xn) 7→ f(1, y1, . . . , yn)

β : g 7→ xd0g(
x1
x0
, . . . ,

xn
x0

)

Note that β(g) is homogeneous of degree d. α(β(g)) = g. But β(α(f)) ̸=
f . However, if f is homogeneous and x0 ∤ f then β(α(f)) = f .

Let Y ⊂ Pn \H0 = U0 be a Zariski closed subset. Let Y be the Zariski
closure of Y in Pn. Then

Y = V (f1, . . . , fm)

for some homogeneous f1, . . . , fm. And since Y = Y ∩ U0,

ϕ0(Y ) = V (α(f1), . . . , α(fm))

Hence ϕ0 is closed.
Conversely, If Z = V (g1, . . . , gm) ⊂ Cn is a closed algebraic set. Then

ϕ−1
0 (Z) = V (β(g1), . . . , β(gm)) ∩ U0.

Hence ϕ0 is continuous.

(1) Let P ⊂ C[x0, . . . , xn] be a homogeneous prime ideal. X = V (P ) ⊂ Pn

is a projective variety. We have seen that

ϕ0(X ∩ U0) = V (P ′) ⊂ Cn

where P ′ = α(P ) ⊂ C[y1, . . . , yn].
Claim. P ′ is a prime ideal.
Indeed.
WLOG we can assume that x0 /∈ P . Otherwise X = V (P ) ⊂ H0, i.e.

1 ∈ α(P ) and then P ′ = C[y1, . . . , yn].
Note that β(α(f)) ∈ P, ∀f ∈ P . Indeed, If f = xm0 f̃ with x0 ∤ f̃ ,

then β(α(f)) = β(α(f̃)). Since x0 /∈ P , f̃ ∈ P . Now it is sufficient to
consider the case where x0 ∤ f .

Write f =
∑d

k=0 f(k) where d = deg f . Since P is homogeneous,
f(k) ∈ P . Then

α(f) =
∑
k

α(f(k))

β(α(f)) = xd0
∑
k

α(f(k))(
x1
x0
, . . . ,

xn
x0

) =
∑
k

xd−ek
0 β(α(f(k)))

where ek = degα(f(k)).

Note that β(α(f(k))) =
f(k)
xε
0

where ε is the maximal power s.t. xε0|f(k).

But since f(k) ∈ P and x0 /∈ P ,
f(k)
xε
0
∈ P implies that β(α(f(k))) ∈ P, ∀k.

Hence β(α(f)) ∈ P
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Now let g, h ∈ C[y1, . . . , yn] be such that gh ∈ P ′. Then there exists
f ∈ P s.t. gh = α(f). Then β(g)β(h) = β(gh) = β(α(f)) ∈ P . Since P
is prime, either β(g) ∈ P or β(h) ∈ P . Hence either g ∈ P ′ or h ∈ P ′.

(2) Similar. □

Corollary 2.2.2. If X ⊂ Pn is a projective variety. Ui := Pn \ Hi, i =
0, . . . , n. Then

X =

n⋃
i=0

(X ∩ Ui).

Example 2.2.1. Conseider X = V (xy − z2) ⊂ P2.
In P2 \V (x), X \(X∩Vx) ∼= V (u−v2) ⊂ C2. And X∩V (x) = {[0 : 1 : 0]}
In P2 \ V (z), X \ (X ∩ Vz) ∼= V (st − 1) ⊂ C2. And X ∩ V (z) = {[0 : 1 :

0], [1 : 0 : 0]}.

Definition 2.2.3. Let X = V (P ) ⊂ Pn be a projective variety.

(1) For any a = [a0 :, · · · : an] ∈ X, the local ring at a in X is

OX,a :=
{fg | f, g ∈ C[x0, . . . , xn] homogeneous of the same degree, g(a) ̸= 0}

{fg | f, g ∈ C[x0, . . . , xn] homogeneous of the same degree, g(a) ̸= 0, f ∈ P}
.

(2) The function field of X is defined as

C(X) :=
{fg | f, g ∈ C[x0, . . . , xn] homogeneous of the same degree, g /∈ P}

{fg | f, g ∈ C[x0, . . . , xn] homogeneous of the same degree, g /∈ P, f ∈ P}
.

(3) For any a = [a :0:, · · · : an] ∈ X, the tangent space of X at a is

TaX := Der(OX,a, a)

(4) dimX := tr. degCC(X).
(5) a ∈ X is smooth iff dimTaX = dimX. a ∈ X is singular if it is not

smooth.

Remark 2.11. (Under the previous notations)

(1) If a ∈ X ∩ Ui, then

OX,a
∼= Oϕi(X∩Ui),ϕi(a)

holds for i = 0, . . . , n.
Indeed. Take, WLOG, i = 0. Recall the map α, β in the proof

of Proposition 2.2.2. We have seen that phi0(X ∩ U0) = V (α(P )).
Note that if g ∈ C[x0, . . . , xn] is homogeneous and g(a) ̸= 0, then
α(g)(ϕ0(a)) ̸= 0. Hence α induces a homomorphism

OX,a → Oϕi(X∩Ui),ϕi(a)

f

g
7→ α(f)

α(g)
.

(surj.) Let h
k ∈ Oϕi(X∩Ui),ϕi(a),

h
k =

α(β(h)xdeg k
0 )

α(β(k)xdeg h
0 )

.
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(inj.). Clear.
Moreover, this map sends the ideal generated by P to the ideal gen-

erated by P ′ = α(P ). Then the statement follows from

Oϕ0(X∩U0),ϕ0(a)
∼=
OCn,ϕ0(a)

P ′OCn,ϕ0(a)
.

See the proof of the theorem about the univity of Taylor series.
(2) If X & Hi i.e. X ∩ Ui ̸= ∅, then C(X) ∼= C(ϕi(X ∩ Ui).

In particular, C(X) ∼= Frac(OX,a) ∀a ∈ X.
Indeed. The first isomorphism is induced as in (1). The second

isomorphism follows the fact that

C(ϕi(X ∩ Ui)) ∼= Frac(Oϕi(X∩Ui),ϕi(a)).

Proposition 2.2.3. Let X = V (P ) ⊂ Pn be a projective variety. If X∩Ui ̸=
∅, i = 0, . . . , n, and let a ∈ X ∩Ui. Then dimX = dimϕi(X ∩Ui) and a is
a smooth point of X iff phii(a) is a smooth point of ϕi(X ∩ Ui).

Proof. From remark 2.11 (2), we have

dimX = tr.degCC(X) = tr.degCC(ϕi(X ∩ Ui) = dimϕi(X ∩ Ui).

And from remark 2.11 (1), we have

DerOX,a,a
∼= DerOϕi(X∩Ui),ϕi(a)

,ϕi(a)
∼= DerRϕi(X∩Ui)

,ϕi(a).

Moreover, Tϕi(a) = DerRϕi(X∩Ui)
,ϕi(a) + ϕi(a). Then

dimTaX ≥ dimX

and equality holds iff a is smooth in X. □

Remark 2.12. Let X = V (P ) ⊂ Pn be a projective variety. Consider the
affine cone over X

C = {a = (a0, . . . , an) ∈ Cn+1 | f(a) = 0, ∀f ∈ P} ⊂ Cn+1.

Then dim C = dimX + 1

Example 2.2.2. Let f1, . . . , fm ∈ C[x0, . . . , xn] be homogeneous of degree
1. Let P := (f1, . . . , fm) and X := V (P ). (Assume X ̸= ∅). Then X
is a projective variety of dimension dimX = n − rkA where A = (ajk) ∈
Matm,n+1(C) with fj =

∑n
k=0 ajkxk.

Indeed. Let i ∈ {0, . . . , n} s.t. a ∈ Ui. Then ϕi(X ∩Ui) ⊂ Cn is a linear
space of dimension n− rkA.

Take, WLOG, i = 0. X = {[x0 : · · · : xn] |
∑n

k=0 ajkxk = 0, j =
1, . . . ,m}. Take yk = xk

x0
, then

ϕ0(X ∩ U0) = {(y1, . . . , yn) |
n∑

k=1

ajkyk = −aj0}

Exercise 2.2.1. In this case, X is homeomorphic to PdimX .
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Exercise 2.2.2. If f =
∑n

i=0 cixi is homogeneous of degree 1 and H :=
V (f), then

Pn \H → Cn

[a0 : · · · : an] 7→ (
a0

fa0,...,an
, . . . ,

âi
fa0,...,an

, . . . ,
a0

fa0,...,an
)

where ai
fa0,...,an

is such that ci ̸= 0. Such H is called an hyperplane.

Proposition 2.2.4. Let X ⊂ Pn be a projective variety of dimX = n −
1. Then X = V (f) for some f ∈ C[x0, . . . , xn] irreducible homogeneous
polynomial.

Such X are called hypersurfaces

Proof. Assume X = V (P ) for some homogeneous prime P . Let f ∈ P \0 be
of minimum degree. Note that f is irreducible. Then X = V (P ) ⊂ V (f).
Assume by contradiction that ∃a ∈ V (f) \X.

Case 1. ∃i ∈ {0, . . . , n} s.t. X ∩ Ui ̸= ∅ and a ∈ Ui. Then

ϕi(X ∩ Ui) & ϕi(V (f) ∩ Ui) ⊂ Cn

of the same dimension n− 1. Contradiction.
Case 2. No such i s.t. X ∩ Ui ̸= ∅. And a /∈ Ui. Then ∃j ∈ {0, . . . , n}

s.t. X ⊂ Hj . Hence xj ∈ P . Since xj is an element of minimal degree of
P , X = Hj . By Case 1., replace f with xj . □

Example 2.2.3 (Quadrics). Let f ∈ C[x0, . . . , xn] be homogeneous irre-
ducible polynomial of deg f = 2. WLOG, assume that

f =
r∑

i=0

x2i

where r is called the rank of f . X = V (f) is called a quadric in Pn.
Consider X ∩ Uk for k = 0, . . . , n.
Case 1. k ≤ r. Then ϕk(X ∩ Uk) = V (1 +

∑
i ̸=k y

2
i ) ⊂ Cn, yi =

xi
xk

is a

smooth hypersurface since the Jacobian (2y0, . . . , 2̂yk, . . . , 2yr) is full rank.
Case 2. k > r. Then ϕk(X ∩ Uk) = V (

∑r
i=0 y

2
i ), yi =

xi
xk
. The Jacobian

(2y0, . . . , 2yr) is 0 for any (y0, . . . , ŷk, . . . , yn) = (0, . . . , 0, yr+1, . . . , ŷk, . . . , yn).
Hence If r < n, X contains singular points. X is smooth iff r = n.

Exercise 2.2.3. f = x20 +
∑r

i=1 x
2
i is irreducible ⇐⇒ ∆ = −4

∑r
i=1 x

2
i ∈

C[x1, . . . , xn] is not a square.

2.3. Divisors.

Definition 2.3.1. Let X = Pn be a smooth projective variety. A prime
divisor is a subvariety Z ⊂ X of codimZ = 1.

Definition 2.3.2. Let Z be the set of all prime divisors of X. We define
the group of divisors Div(X) of X as the free abelian group generated by
Z.
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D ∈ Div(X) is called a divisor of X and

D =
∑
Z∈Z

nZZ

where nZ ∈ Z and only finitely many of nZ ̸= 0.

Remark 2.13. For any Z ∈ Z and a ∈ Z, if a ∈ Ui for some i, then

ϕi(Z ∩ Ui) ⊂ ϕi(X ∩ Ui)

is a prime divisor.
Moveover, OX,a

∼= Oϕi(X∩Ui),ϕi(a). Recall that we have defined the notion
of the local equation of ϕi(Z ∩ Ui) in ϕi(X ∩ Ui), which is an irreducible
uZ ∈ Oϕi(X∩Ui),ϕi(a) viewed in OX,a.

Let u ∈ C(X)\0. Then for any Z ∈ Z, choose a ∈ Z and a local equation
uZ ∈ OX,a.

Define the order of u at Z as ordϕi(Z∩Ui)(u) in affine case, where we
identify C(X) = C(ϕi(X ∩ Ui)) and a ∈ X ∩ Ui. One can prove that this
definition does not depend on a.

Note that ordZ(u) ̸= 0 only for finitely many Z. Then we can define
div(u) :=

∑
Z∈Z ordZ(u)Z ∈ Div(X). It is called a principal divisor.

Moreover, div(uv) = div(u) + div(v), −div(u) = div(u−1). Hence the set
P (X) of principal divisors is a subgroup of Div(X).

Definition 2.3.3. The divisor class group of X is the group

Cl(X) := Div(X)/P (X).

Proposition 2.3.1. Cl(Pn) = Z.
Proof. We have seen that Z ∈ Z corresponds to Z = V (f) for some irre-
ducible f ∈ C[x0, . . . , xn]. We can define deg(Z) := deg(f). And this can
be extended to a group homomorphism

deg : Div(Pn)→ Z∑
Z∈Z

nZZ 7→
∑
Z∈Z

nZ deg(Z).

We have the following short exact sequence

0→ ker(deg)→ Div(Pn)
deg−−→ Z→ 0.

Claim. ker(deg) = P (Pn).

Indeed. Let u = f
g ∈ C(Pn) where f, g ∈ C[x0, . . . , xn] are homogeneous

polynomials of the same degree. Factorize f, g

f =
M∏
k=1

fµk
k , deg(f) =

∑
µk deg(fk)

f =
N∏
k=1

gνkk , deg(g) =
∑

νk deg(gk).
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Hence div(u) =
∑M

k=1 µkV (fk) −
∑N

k=1 νkV (gk) and deg(u) = deg(f) −
deg(g) = 0.

On the other hand, if D ∈ Div(Pn) has deg(D) = 0, we can write

D =
M∑
k=1

µkZk −
N∑
l=1

νlYl

where µk, νl are positive and Zk = V (fk), Yl = V (gl) for some fk, gl.

Therefore D = div(
∏

f
µk
k∏
g
νl
l

). □

Remark 2.14. Let X ⊂ Pn be a smooth projective variety of dimX = 1. We
have the following exact sequence

0→ J (X)(∼= Cg/Λ)→ Pic(X)
deg−−→ Z→ 0

where Λ(∼= Z2g) ≤ Cg is a lattice of maximal rank and g is the topological
genus of X.

2.4. Grassmannians. A good reference is [2]

Definition 2.4.1. Let V be a n-dimensional vector space over C. Let
1 ≤ k ≤ n. The grassmannian is the set

Gr(k, V ) := {W ⊂ V | W is a subspace of dim(W ) = k}.
We write Gr(k, n) for V = Cn.

Remark 2.15. This definition can be extended to any field k of char k ̸= 2.

Example 2.4.1. (1) Gr(1, n) = Pn−1,
(2) Gr(n− 1, n) = (Pn−1)∨.

In general, givenW ∈ Gr(k, n) and choose a basis ofW : vi =
∑

j aijej , i =
1, . . . , k where ei is the standard basis of Cn. We can represent W with
A = (aij) ∈ Matk,n(C) (rkA = k).

For A,A′ ∈ Matk,n(C), if there exists C ∈ GLk(C) such that A′ = CA,
then they represent the same subspace W .

Now for any multi-index I = (i1 < · · · < ik), define

UI := {W ∈ Grk,n | W ∩ Span(ej | j /∈ I) = {0}}.
Note that

W ∈ UI ⇐⇒ W ⊕ Span(ej | j /∈ I) = Cn

⇐⇒ if v1, . . . , vk form a basis of W then v1, . . . , vk, ej , j /∈ I form a basis of Cn

⇐⇒ if A ∈ Matk,n(C) represent W then det Ã ̸= 0

⇐⇒ det(A(I) := (Ai1 , . . . , Aik) ̸= 0.

It follows that any W ∈ UI is represented by a unique A ∈ Matk,n(C) s.t.

A(I) = IK . Indeed, if W is represented by A, then A(I) ∈ GLk(C), hence
A′ := (A(I))−1A represents W and (A′)(I) = Ik.
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Define

ϕI : UI → Ck(n−k)(∼= Matk,n−k(C))

W 7→ (A(j) | j /∈ I).

where A is the representative of W s.t. A(I) = Ik. ϕI is a bijection. And
we can endow UI with the unique topology such that ϕI is homeomorphism
w.r.t the classical topology on Ck(n−k).

Since Gr(k, n) = ∪IUI , we can consider the smallest topology on Gr(k, n)
generated by the topologies on UI . And with this topology Gr(k, n) is a
compact, Hausdorff topological space. And ϕJ ◦ ϕ−1

I is C∞. We have that
Gr(k, n) is a smooth manifold.

Remark 2.16. There is a better way to proceed. Consider the action of
GLk(C)

GLk(C)× {A ∈ Matk,n(C) | rkA = k} → {A ∈ Matk,n(C) | rkA = k}
(C,A) 7→ CA.

Then Gr(k, n) = {A ∈ Matk,n(C) | rkA = k}/GLk(C) with the quotient
topology and it is a smooth manifold.

Lemma 2.4.1. Let τ ∈
∧k V \{0} where V is a n-dimensional vector space

over C.
Then dim{w ∈ W | τ ∧ w = 0} ≤ k and the equality holds iff τ is

decomposable, i.e. τ = v1 ∧ · · · ∧ vk.

Proof. Let w1, . . . , wm be the basis of {w ∈ W | τ ∧ w = 0}. Complete
w1, . . . , wm to a basis of V as w1, . . . , wm, wm+1, . . . , wn. Then τ =

∑
I PIwI

for multi-index I = (i1 < · · · < ik). We have

0 = τ ∧ wj =
∑
I

PIwI ∧ wj

=
∑

I
j /∈I

PIwI ∧ wj

⇒ PI = 0 if j /∈ I, ∀j = 1, . . . ,m.

But |I| = k and τ ̸= 0, hence k ≥ m. Moreover, if k = m, then PI = 0 if
I ̸= {1, . . . ,m}. Hence τ = w1 ∧ · · · ∧ wk.

Conversely, if τ = v1 ∧ · · · ∧ vk ̸= 0, then

dim{w ∈W | τ ∧ w = 0} = Span(v1, . . . , vk)

and it has dimension k. □

Theorem 2.4.1 (Plüker embedding). We have an injective map.

P : Gr(k, n)→ P(
n
k)−1

Moreover, the image of P , still denoted by Gr(k, n), is a closed algebraic
set.
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Proof. Let W ∈ Gr(k, n). Choose a basis {v1, . . . , vk} of W and consider

v1 ∧ · · · ∧ vk ∈
∧k Cn. Define the map

P : Gr(k, n)→ P(
k∧
Cn)

W 7→ [v1 ∧ · · · ∧ vk].

Identifying
∧k Cn ∼= C(

n
k) we get map to the projective space.

Moreover, P is injective. Indeed, if P (W ) = P (W ′), then for basis {vi}
for W and {v′i} for W ′,

v1 ∧ · · · ∧ vk = λv′1 ∧ · · · ∧ v′k λ ∈ C×.

Since W = {v ∈ Cn | v1 ∧ · · · ∧ vk ∧ v = 0} =W ′. And moreover,

P (W ) = [v1 ∧ vk]

= [
∑

I=(1≤i1<···<ik≤n)

PIeI ]

= [PI | I].
PI are called the Plücker coordinates of W .

Claim. Gr(k, n) ⊂ P(
n
k)−1 is a closed algebraic set.

Indeed. We know that Gr(k, n) = {[τ ] ∈ P(
∧k Cn) | s.t. τ = v1∧· · ·∧vk}.

Consider the linear map

f : Cn →
k+1∧

Cn

v 7→ τ ∧ v.
τ decomposable ⇐⇒ dimker f = k ⇐⇒ rk f = n− k.

Let B := {e1, . . . , en} be the standard basis of Cn and C := {eI | I =

(i1 < · · · < ik+1)} be the basis of
∧k+1Cn. Represent f w.r.t. these basis

as
MB

C (f) = A ∈ Mat( n
k+1),n

(C)

where entries of A are coefficient of τ . Since τ is decomposable, the de-
terminants of all (n − k + 1) minors of A are 0, which are polynomials in
PI . □

Example 2.4.2. The first non-trivial example is Gr(2, 4) ⊂ P5.
UI
∼= C4, hence Gr(2, 4) is an hypersurface in P5.

Theorem 2.4.2. Grk,n ⊂ P(
n
k)−1 is a projective variety of dimension k(n−

k). Moreover, the ideal generated by

k+1∑
a=1

(−1)aPi1,...,ik,jaPj1,...,ĵa,...,jk+1

for any two sequence 1 ≤ i1 < · · · < jk−1 ≤ n, 1 ≤ j1 < · · · < jk+1 ≤ n is
prime and V (P ) = Grk,n.



38 ZIWEI WEI

References

[1] M. F. Atiyah, I. G. MacDonald, Introduction to Commutative Algebra, Addison-
Wesley, 1969.

[2] P.Griffiths, J. Harris, Principles of algebraic geometry, John Wiley & Sons, 2014
[3] R. Hartshorne Algebraic geometry, Graduate Texts in Mathematics, No. 52.

Springer-Verlag, New York-Heidelberg, 1977.
[4] I.R. Shafarevich, Basic Algebraic Geometry 1: Varieties in Projective Space, Third

edition. Springer, Heidelberg, 2013.
[5] D. Mumford,Algebraic Geometry I, Complex Projective Varieties, Springer Berlin,

Heidelberg, 1995
[6] O. Zariski, P. Samuel, Commutative Algebra, Volume I, Springer, 1958.
[7] O. Zariski, P. Samuel, Commutative Algebra, Volume II, Springer Science & Busi-

ness Media, 2013


	0. Preface
	1. Affine Varieties
	1.1. Algebraic subsets
	1.2. Affine varieties
	1.3. Tangent spaces of affine varieties
	1.4. Tangent spaces and derivations
	1.5. Dimension theory
	1.6. Structure of affine varieties at smooth points.
	1.7. The local ring of a point
	1.8. Power series expansions
	1.9. Analytic structure of smooth point
	1.10. OX,a is a UFD
	1.11. Morphisms between affine varieties
	1.12. Appendix. primary decomposition
	1.13. Appendix. transcendental extension
	1.14. Appendix. Localization

	2. Projective Varieties
	2.1. Projective Space
	2.2. Projective Varieties
	2.3. Divisors
	2.4. Grassmannians

	References

