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0. PREFACE

The main reference is [5].

1. AFFINE VARIETIES

1.1. Algebraic subsets. All ring will be assumed as commutative ring with
unit.

Definition 1.1.1. A closed algebraic subset X C C" is the set of zeroes
of a finite numbers of polynomials

X ={a=(a1,...,ay) | filar,...,ap) =0,Yi=1,...,m}
where f; € Clxy,...,x,)].
It is also denoted by V' (fi,..., fm)-

Remark 1.1. The ideal generated by f1,..., fm is

I=(f1,- s fm) ={D_9ifi | i € Clzr,..., n]}.

And the set of zeroes of [ is X =V (I) ={a € C" | f(a) =0,Yf € I}.
By Hilbert basis theorem, every ideal I C C[z1,...,x,]isf.g., i.e., 3f1,..., fm
st. I =(f1,...,fm). Hence we will talk about V(I),I C C[zy,...,zy,)].

Proposition 1.1.1. Let I1, I5, {14 }aca be ideas of Clxy, ..., x,]. a = (a1,...,a,) €
C™. Then the following hold true.

(1) If I C I, then V(I) C V(Iy),

(2) V() UV (L2) =V(I1NIl)=V(I1 - I2) (Iils = {fg|f € 1,9 € I2}),
( ) (ZaeAI ) = ﬂaeA V(Ia);

(4) If mg := (x1 — a1, ..., Ty — ayp), then V(m,) = {a},

(5) V(VT) = V(I)

(VI={f €Clzy,...,za] | X €I for some K > 0}).

Proof. (1) evident.
(2) Since I1Is C Iy N I3 C Iy, I3, (1) implies that

V(11]2) D) V(Il N 12) D) V(Il>, V([Q).

Conversely, let a € V([112). If a ¢ V(I; N I2), then 3f € I N I s.t.
f(1) #0. Then f?(a) # 0, but f2 € I Is. The remain is similar.

(3) (C) In C > IVa , hence V(> 1,) C V(Iy)Va.
(D) Immediately.

(4) be Vma iff b —a; = 0, Vi.

(5) () VIDI
(D) Let a € V(I). If a ¢ V(VT), then 3f € VT s.t. f(a) # 0. Hence
% (a) # 0. contradiction. O

Remark 1.2. (1) It can happen that I1Jp & I N Iy,
(2) VT is an ideal and it is called the radical of I,



4 ZIWEI WEI

(3) Proposition 1.1.1(2), (3) implies that algebraic subsets of C™ satisfy
the axiom of closed sets of a topology on C™ and it is called Zariski
topology.

Remark 1.3. The Zariski topology is not Hausdorff unless the base field k is
finite.

1.2. Affine varieties.

Definition 1.2.1. An affine variety is a non-empty closed algebraic set
X C C" of the form X = V(P) with P prime ideal.

Example 1.2.1. Let f € Clxy,...,zy] be irrd. Then V(f) =V ((f)) Cc C"
is an affine variety and it is called an hypersurface of C™.
Note that if f is not irrd then (f) is not prime.

Example 1.2.2. Let g2, ...,9n € C[z1]. Consider X :={(a, g2(a),...,gn(a)) €

C" | a € C}.
It is a closed algebraic subset by X =V (xa—ga2(z1),...,Tn—gn(x1)). And
since Clxy, - - xp]/(x2 — g2(x1), . . ., Tn, — gn(x1)) = Clz1] which is a integral

domain. Hence X is an affine variety and it is called rational space curve.

Exercise 1.2.1. Let 1, ...,pr C Clzy,...,zy,] be homogeneous polynomials
of degree 1. Suppose that {p;} are linearly independent as elements of (C™)*.
Then for any by, ..., b € C, fired X = V(o1 —b1,..., 0k — by), which is the
set of solutions of the linear system @; = b;.

Prove that X is an affine variety. It is called a linear subspace of C"* of
dimension n — k.

Now for any subset S C C”, we can define
I(S) :={f € Clz1,...,x4) | f(a)=0,VYa € S}.
We have the following amazing theorem.
Theorem 1.2.1 (Hilbert’s Nullstellensatz). For any ideal J C Clxy, ..., z,],
I(V(]) =VJ.
In particular, if the ideal J is prime, then I(V(J)) = J.
Remark 1.4. (1) The theorem holds true for any algebraic closed field(See

1))
(2) Tt fails if the field is not algebraic closed. For example, take k = R,
I(V(2? + y* + 1)) = R[z,y] where V(22 4 y* + 1) is actually empty.
(3) (Study’s lemma) Let k = k. If f € klzy,...,zy] is irrd, then I(V(f)) =
(f)

Lemma* 1.2.1. IfY; C Ys are algebraic subsets of C™, then I(Y1) D 1(Ya).
Proposition* 1.2.1. V(I(9)) =S
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Proof. On the one hand we have S C V(I(S)) where by definition S is
closed. Hence S C V(I(S)). On the other hand, recall that the closure

S=w
where W runs over all algebraic subsets of C™ that contain S. And we can
write W = V/(J) for some ideal J. Then S C V(J) and by Lemma™ 1.2.1,
we have I(S) D I(V(J)) D J. Then by Proposition 1.1.1(1), W = V(J) C
V(I(9)) for any such W. It follows the statement. O

Definition 1.2.2. Let V(P) C C" be an affine variety. And let k C C be
a subfield. A point a € V(P) is called a k-generic point if the following
condition holds true: Vf € k[z1,...,x,], if f(a) =0, then f € P.

Example 1.2.3. Consider ga, ..., g, € Q1] and let X = V(zo—ga(21), ..., Tn—
gn(x1)) be the rational space curve. Let a = (m, g2(pi),...,gn(7)) € X.
Then a is Q-generic.

Indeed, let f € Q[z1,...,zy] is s.t. f(a) = 0. But ¢ = f(x1,22 —
92(1), - -y Ty — gn(x1)) € Qlx1], hence ¢ = 0. It follows that ¢ € P.

Proposition 1.2.1. Let V(P) be an affine variety. Let k C C be a subfield
s.t. tr.deg Clk = co. Then there ezists a € V(P) a k-generic point.

Proof. Let P = (f1,..., fm)and, WLOG, assume that f1,..., fm € k[z1,...,2y]

(Otherwise let k’ be the minimal subfield of C containing k and the coef-
ficients of f1,..., f;s. Then tr.deg C|k’ = oo and any k’-generic point is also
a k-generic point).

Let Py = P Nk[zy,...,zy,], which is prime. And let K be the fraction
field of k[l‘l, . ,xn]/Po.

Since for any f/g € K, it is a root of gy — f € k(z1,...,%,)[y], where
Z1,...,Zp is the isomorphic class in k[x1, ..., x,|/Py. We have that K |k(z1,...,Z,)
is algebraic. Hence tr.deg K|k < n < oo.

In this situation, there exists a field homomorphism

¢o: K—C
s.t. ¢|x = idg(Indeed, let A1,...,\s € K be a transcendence basis for K|k.

Let z1,..., 25 € C be algebraically independent over k. The map \; — z;, Vi
extends to a unique field homomorphism from K — C. See [6] Ch.2 Thm

33).
Let a; := ¢(Ez) e C.
Claim. a = (aq,...,a,) € X is a k-generic point.

Indeed. First we have that f;(z1,...,Z,) =0i=1,...,mink[zy,...,z,]/Fo.
It follows that

0= gb(fl(a_cl, A ,i‘n)) = fl(gb(i‘l), .. ,gb(i‘n)) = fi(al, .. .,an) 7= 1, oo, M.
Hence a € X.
Now let f € klzy,...,zy] s.t. f(a) =0. If f ¢ Py, then [f] € k[z1,...,z4]

is nonzero. Applying ¢ to this class we get that f(a) = 0, which is contra-
diction. O
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Remark 1.5. One could have defined k-generic point for all V(I) where
I C Clzy,...,zy] is any ideal. But in the following case, it doesn’t exist.

Let I = (zy) C Clz,y| be an ideal and a = (a1, az2). If ay = 0, then for
y C kl[z,y], Vk C C, y(a) = az =0, but y ¢ I. It is similar when a; = 0.

Now we can give a proof of Theorem 1.2.1.

Proof. Step 1. Let J = P be prime. Let f € I(V(P)) and k be the minimal
subfield of C containing Q and the coefficients of f. Then tr.deg C/k = oo
and by Proposition 1.2.1, there exists a k-generic point ¢ € X. And since
fel(X), f(a) =0, then f € P.

Step 2. Not let J be any ideal and f € I(V(J)). Consider the primary
rep

\/jzplﬂ'“ﬁPN.

Then V(J) =V (V/J)=V(P)U---UV(Py). So f e I(V(P))i=1,...,N.
Then by Step 1., f e P;i=1,...,N, and f € VI. O

Corollary 1.2.1. There is an order-reversing correspondence
{(J CClz1,...,25) | J =VJ} < {closed algebraic subset of C"}
J = V(J)
I(X)+— X
Definition 1.2.3. Let X = V(P) C C" be an affine variety with P C

Clz1,...,xy] prime ideal. The ring Rx := C[z1,...,2,|/P is the affine
coordinate ring of X.

Corollary 1.2.2. In this situation, Rx is isomorphic to the ring of func-

tions X — C which are restrictions of polynomials in Clxy, ..., zy].
Proof. Let F(X) :={F : X - C| st. 3f € Clxy1,...,zy] s.t. F(a) =
f(a), Va.

Restriction yields an surjective homomorphism
Clz1,...,zp] = F(X) =0
and its kernel is P. Then we have the isomorphism. ([l
1.3. Tangent spaces of affine varieties.

Definition 1.3.1. Let X = V(P) be an affine variety with P € Clxy, ...,z
prime. Let a € X, the Zariski tangent space of X at a is the linear
subspace of C™ given by the equations

> af{(a)(a:i—ai) =0,, VfeP

and denoted by TXﬂl.

B prefer T, X so I might change this symbol hereafter
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Remark 1.6. (1) If P = (f1,..., fm), then

of ,
T.X = L ( —a;) = =1,... :
V{Zaxz a;)=01]j=1,...,m})
Indeed, (C) is obvious. (D) If (by,...,b,) € C" is s.t.
afj (CL)(bZ - ai) = 0, Vj = 1,...,m.
=0 83:7’

Let f € P, we can write f = >./", fig; for some g; € Clz1,...,xy].

Then
Z @) (b — a:) = Zzagff —a) =0,
=0 7

=0 =1
(2) T X C (C” is an affine subspace passing through a.

s

1.4. Tangent spaces and derivations. Let R := Rx be the affine coor-
dinate ring of X.
Recall that a derivation of R (centered) at a € X is a C-linear map

D:R—C
s.t.

(1) D(fg) = f(a)D(g9) + g(a)D(f),, Vf,g € R,
(2) D(A\) =0, YA € C.

Let Dergq be the set of such derivations.

Remark 1.7. Derpg, is a vector space over C.

Proposition 1.4.1. Let Z1,...,Z, € R be the classes of x1,...,%,. Then
the map

¢ :Derpg —C"
D (D(71),..., D(#n))
is an injective linear map and its image is T, X — a.

Proof. Exercise. O

1.5. Dimension theory. The Zariski tangent space we have defined before
is an affine subspace of C". As a vector space, it has dimension

: af;
dm7T, X =n — rk(@:vl(ja))i’j'
For any k € N, we have
of;

{ae X | dmT,X >k} ={a€ X | rk(8 (a ))”_n—k}

= {a € X | the determinants of all minors of ?

1
Ozxi(a)

mn—k+1)x(n—k+1) of are 0}.
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Hence {a € X | dimT,X > k} is a closed subset of X in the Zariski
topology of X.

Remark 1.8. (1) {a€ X | dimT,X >k} C{a e X | dimT,X > k — 1},
(2) Let d :== min{dim7,X | a € X}. Observe that

U:{a€X| dlmTaX:d}:X—{a€X| dlmTaXZd—i—l}
is open and nonempty.

Proposition 1.5.1. Let X = V(P) be an affine variety with P C Clx1, ..., xy]
prime. Let C(X) = Frac(Rx). (C(X) is called the field of rational functions
of X) Then

d = tr.deg(C(X)/C).

Definition 1.5.1. The dimension of an affine variety X is dim X := tr. deg(C(X)|X).
And a point a € X is smooth if dim7T, X = dim X. a € X is singular if
dim7T,X > dim X.

Remark 1.9. Let Z1,...,Z, € Rx be the classes of z1, ..., x,. Then C(X) =
Clz1, ..., Tp]-

Indeed . (C) is clear.
(D) Let € C(X) where f,g € Rx and g # 0. And f,g are the classes

of f,g respectlvely. Then f.g are polynomials in Z1,...,Z,. Then % €
bCZ1,. .., Tp].

It implies that tr.deg(C(X)|C) < oo.

QI

Example 1.5.1. (1) dimC"” =n

(2) Ya € C", dim{a} =0 (Jacobian is the identity)

(3) Let f € Clzy,...,xp] be irrd(f ¢ C). Let X =V (f).

of af)

8371 . 8%1 -
Notice that there exists a € X s.t. rk(%) =1.

Indeed. If rk( af) = 0,Ya € X, then g—f € I(X) = (f). Hence
f|gf Vi. It follows that 8f = 0,Vi sicne deg(9 < deg f if 8f £ 0.
Then feC contmdzctwn

Therefore, dim X =n — 1.

(4) Consider the rational space curve X = V(xg — ga(x1,..., 2y — gn(x1)).
Its Jacobian is

0 <rk(5-

o)
—92 10 0
o)
00
9gn
“gmo0 o0 -1

of rankn — 1. Hence dim X =n — 1.
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(5) Consider the cuspidal cubic curve X = V(2% — y3) c C%. Its Zariski
tangent space at p = (a®,a?) is

T,X = {(z,y) € C* | 2a3(z — a®) — 3a*(y — a*) = 0}

C?, a=0,
B 203 (z — a®) — 3a*(y —a?®) =0, a#0.
Then min{dimT,X} =1 and dim X =n — 1. X is singular at (0,0)

Lemma 1.5.1. Let R be an integral domain over fieldk and P C R a prime
ideal. Let K := Frac(R) and K' = Frac(R/P). Assume tr.deg K|k < oo.
Then

tr. deg K|k > tr.deg K'|k

and the equality holds iff P = (0).

Proof. If P = (0) everything is clear. Assume P # (0) and assume by
contradiction that

tr. deg K |k < tr.deg K'|k

By Ch.II, Sec 12, Thm 27 of [6], there exist ¢1,...,¢, € R/P that are
algebraically independent over k where n = tr.deg K'|k. Let f1,...,f, € R
s.t. their classes in R/P are @1, ..., @, respectively. Let p € P, p # 0. Then
P, f1,.-., fn are algebraically dependent. Hence there exists a polynomial
O e kly,z1,...,2,]\0s.t. ®(p, f1,..., fn) =0. WLOG, we can assume P is
irrd (since R is an integral domain). Moreover ® # ay, « € k since p # 0.
Hence ®(0,z1,...,2,) # 0. And passing to R/P, ®(0,¢1,...,¢)n) = 0,
contradiction. (I

Proposition 1.5.2. Let X,Y be two affine varieties with X & Y. Then
dim X <dimY.

Proof. Let X = V(P), Y = V(Q) with P,Q C Clzy,...,z,] prime. Then
Q & P. We have
0—-P—>Ry —-Rx—0
where P = P/Q. Then Rx = Ry /P.
By Lemma 1.5.1, tr.deg(C(Y)|C) > tr.deg(C(X))|C and the equality
holds iff P = (0), which is P = Q. O

Corollary 1.5.1. Let X C C" be an affine variety of dimension n—1. Then
X is a hypersurface(i.e. 3f € Clzy,...,xy,] irrd s.t. X =V (f) ).

Proof. Let X = V(P) with P prime. Let f € P, f # 0. Then X C V(f).
And there exist f1,..., fy € Clxy,...,z,] irrd s.t.

f=f-fneP

Since P is prime, there exists ¢ € {1,..., N} s.t. f; € P. Hence X C V(f;).
And since dimX = n — 1 = dim V(f;), by Proposition 1.5.2, we have
X =V(fi). O
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Corollary 1.5.2. Let X C C" be an affine variety. Then dimX = 0 &
X = {a} for some a € C"

Proof. (<) Clear. (=) If da € X and {a} # X, then 0 = dim{a} <

dim X = 0, contradiction. O
Remark 1.10. Let X = V(P) C C" be an affine variety with P prime.
And dim X = n — r. In general, there are no f1,..., f, € Clz1,...,2,] s.t.
P=(fi,.... o)

For example, Let X C C3 be an affine variety with dimX = 1. If P =
I(X), the minimal number of generators of P is 3. Consider the map
0:C—C3

a— (a®,a*,a’)

Let X := {(a* a* a®) | a € C} C C3. Then clearly we have that X C V(1)
where I = (vz — y?, 23 — yz, 2%y — 2%). Conversely, let (z,y,2) € V(I), set
a:=%if x #0 (if 2 = 0 then y = z = 0). Then we have

Therefore, X =V (I).

Moreover, [ is a prime ideal and it cannot be generated by 2 polynomials.

Claim. /T is prime.

Indeed. By Theorem 1.2.1, VI = I(X). If 3f), f» € Clz,y,2] s.t.
fifo € VIbut fi, f2 ¢ VI. Then fiop, faop € Clt]\ 0 but (fif2)op =
(f10o¢)(f20¢) =0, contradiction. O

Claim. /T cannot be generated by 2 polynomials.

Indeed. Let f € VI. Tt can be written as

f= Zcijkxiyjzk
st Y cpt? TR = 0, Vi de., Vm >0, V(i, j, k) s.b. 3i +4j + 5k = m,
Z Cijk = 0, Ym > 0.

(4,9,k)
3i+4j+5k=m

(1) m = 0. Co00 = 0.
(2) m =1,2. None.
(3) m = 3. C100 = 0.
(4) m = 4. Co10 — 0.
(5) m =95. Coo1 — 0.
(6) m = 6. Co200 — 0.
(7) m="1. C110 = 0.
(8) m = 8. c101 + co20 = 0. We get C(zz — y?).
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(9) m =9. c300 + co11 = 0. We get C(z3 — y2).
(10) m = 10. ca19 + cooz = 0. We get C(x2y — 22).

In conclusion, f has the form
f=alwz—y?) +Ba® —y2) + 4%y — 2*) + f, o, 8,7 € C.
If VI = (f,g), then

g=a(vz— yz) + 5,(373 —yz) + 7/(3729 - 22) +9.

and we can express xz — y2, 2% — yz, £2y — 2z? as a linear cpmbination of f, g.

But they are linearly indenpendent. Contradiction. [J
To prove Proposition 1.5.1, we need the following lemmas.

Lemma 1.5.2. Let Uy, Uy C X be nonempty Zariski open subsets. Then
UynUy# 2.

Proof. Let X = V(P) with P prime. We can write the open sets as
Ui=XnN(C"\V(L)), i=1,2.

Nonempty implies that there exists a; € X and f; € I; s.t. fi(a;) # 0, and
hence f; ¢ P for i =1,2. If Uy N Uz = &, then

XN(C"\V(I1))N(C™"\V (I2)) = XN(C"\(V([1)UV (I3))) = XN(C"\V(112)) = @.
It implies that X C V(I113) and then f; fo € P, Contradiction. O

Definition 1.5.2. Let S be a ring and R C S be a subring. A map R — S
is said to be a derivation of R (with values in S) if

(1) D(z+y) = D(z) + D(y), Y,y € R,

(2) D(zy) = 2D(y) +yD(z) v,y € R.

Definition 1.5.3. Let S be a ring and R C S be a subring. Let R C R
be a subring. A derivation D : R — S is called a R'-derivation if D(z) =
0, Vo € R". We denote Dp/p/(S) the set of all R'-derivation of R. If S = R,
we write D/ rr = Dg/ri(S)

Remark 1.11. (1) Dg/p/(S) is an S-module. In particular, if S is a field,
then D/ r/(S) is an S-vector space.

(2) Assume that R is an integral domain. Let K = Frac(R). Then any
derivation D of R with values in K can be extended uniquely to a

derivation of K. Moreover, we have Dr(K) = D (K).

Indeed. Let z,y € Rand y # 0. Define D(%) = w. Observe
that if & = 5—:, by definition we have D(7) = D(;—i) It is easy to see
that the map D : K — K is a derivation. Uniqueness is immediately.

Example 1.5.2. (1) Let R be a ring and D be a derivation on R. Let

A = R[x1,...,xy,]. For any
— E ) i i
f - Cityeryinly " m’nn7
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define
fP =" Dlciy, in)zi iy
It gives a derivation of A.
(2) Let R' be a ring and R = R'[x1,...,x,). Define
0
D,=—:R— R.
’ 8$Z
with
Dl(C) =0, Vce R/,
Di(Y oy 20) = Y Oy ki T ).

D; is a R'-derivation.

D; is uniquelly determinde by (1), (2) in Definition 1.5.2 and D;(c) =
0, Vee R/, Dl(l‘]) = (5”

(3) If R =k is a field and K = k(x1,...,2,). Then dimg Dgp = n and

Dy, ..., Dy form a basis for Dg|.

Indeed. Let D € Dg, we consider D' := Y 1" | D(x;)D; € Dy It
is easy to see that D = D'. Hence Dy = span(D1,. .., Dy). It remains
to show that D1,...,D, are linearly independent. Let \; € K be such

that
Z \D; = 0.

In fact, we have the following theorems.

Then

Theorem 1.5.1 ([6] Ch.2, Sec.17, Thm4l). Let K be a field, char K = 0.
Let F = K(x1,...,x,) by any f.g.extension of K. Then

Corollary 1.5.3 ([6] Ch.2, Sec.17, Cor2'). Let K be a field. Let F|K by a

separable algebraic extension. Then any derivation of K can be extended to
a derivation of F' in a unique way

Example 1.5.3. Consider the polynomial ring K|x1,...,x,] and its field
of fraction F' = K(z1,...,7n). Then Dy (F) as vector space over F' hase
basis Dy,...,D,.

Lemma 1.5.3. There exists a nonempty Zariski open subset Uc X st
Va € U, dimT,X = tr.deg(C(X)|C).

Proof. Let Zi,...,T, be the classes of z1,...,2, in C(X) Then C(X) =
C(z1,...,%y) and it is f.g.over C. Then by Theorem 1.5.1,

tr. deg(C(X)|C) = dimg(x) Dy (c(C(X)) = dime(x) Deje,....,zn]/(P+C) (C(X))
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where

Defar,...n)/(P0) (C(X)) = {(A1,.... M) € C(X) | D ADi(f) =0, Vf € P}
=1

= (O, M) €COO) | DDA (f) =0, ¥f € P)
i=1 !

And then the dimension of this set is n — rkg( X)(%)‘

Claim. There exists a nonempty Zariski open subset Uc X st.

Of: Of .
e () = (P2 (@), va e U

(2 (2

— 1k of;
= rke(x) (F0)
Indeed. By linear algebra we know that there exist A € GL,,(C(X))

and B € GL,(C(X)) s.t.

Ofi g _ (1 0

A
((9.%'1 0 0

But we can write A = éAo, B = %Bo for some o, € Rx and Ay €
Mat,,(Rx) and By € Mat,(Rx).

Let U := {a € X | a(a)B(a) det(Ag(a)) det(Boa) # 0}, which is a nonempty
Zariski open set. And for any a € U,

1 " of; " 1 Q) = I, 0
S DO G @) g B = |
Hence r = rkc(g—g(a)), Va e U. O

Now we give the proof of Proposition 1.5.1.

Proof. We have seen that there exists a nonempty Zariski open subset U C
X st. Va € U, dim T, X = min{dim 73X | b € X}. Then by Lemma 1.5.2,
UNVU # &, where U is as in the Lemma 1.5.3. O

1.6. Structure of affine varieties at smooth points.

Theorem 1.6.1 ([5], Thm 1.16, Cor 1.20).
(1) Let fi,..., fr € Clz1, ..., x,) without constant terms (f;(0) =0, j =

1,...,7) and s.t. the linear parts are linearly independent
(%(0), . %(0), j=1,...,r, are linearly independent.) De-
fine
> i1 hif
P:={geClry,... x| % —g, hj, K €Clzy,...,z,), K(0) #0}.

Then P is a prime ideal and X := V(P) is a variety of dimension
n—r and 0 € X is a smooth point.
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Moreover, V(f1,..., fr) = XUY where Y is a closed algebraic set
s,t, 0¢Y.
(2) Conversely, if X = V(P) C C™" is an affine variety of dimension
n—r and a € X is smooth. Then there exist fi,..., fr € P s.t.

(G2 (@) =1
and
T hifs
P={geClzi,...,z,] | X:J_]l(]f]:g, hj, K € Clzy,...,x,), K(0) #0}.

Example 1.6.1. Again consider X = {(a%,a* a®) | a € C} = V(P) c C3
where P = (vz—y%, o3 —yz, 2%y —22). And it is easy to see that (1,1,1) € X
is a smooth point. One can check that it satisfies (2) in Theorem 1.6.1.

1.7. The local ring of a point. Let R = Clz1,...,z,], P = (z1 —
ai,...,Ty — ap) where a = (a,...,a,) € C". Here P is a maximal ideal.
Ocn o = Rp is called the local ring a whose elements are rational functions
defined in some neighborhood of a.

Remark 1.12. If g € Clzy,...,zy,] is s.t. g(a) # 0, then we can consider

g(ylv e 7yn) = g(al +Y1,...,an + yn) € C[Z/ly sy yn} and then g(O) # 0.
Then it as a inverse in the ring of formal power series

1 e . ,
——= > ity €Cllyn -l
g(y) 01 yeeesin =0

For example,

1 [ee] n k
7:1_’_ Cils

Hence we have Ocn C Cl[y1,...,yn]]. Then in a neighborhood of the
smooth point a, it is also a complex manifold in the Euclidean topology.

Now we consider the case of affine variety. Let X = V(P) € C" be an
affine variety, « € X. And let M, := (1 — a1,...,%T, — a,). We can also
define Ox 4 := (Rx)yz, the local ring of a € X.

Remark 1.13. Note that Frac(Ox,) = C(X).
Proposition 1.7.1. Rx = NeexOx,q in C(X).

Proof. (C) We have the map f { € Ox,, Va € X.

(D) Let u € NaexOx.q. Let I :={h € Clwy,...,7y] | hu € Rx} where h
is the class of h in Rx. Note that [ is an ideal and P € I.

For any a € X, since u € NgexOx , can be expressed as
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Hence g € I. But g(a) # 0, if follows that a ¢ V(I). And since P C I, we
have V(I) € X and V(I) = @. By Theorem 1.2.1, 1 € v/I. Therefore,
lelTandu=1-u€ Rx O

1.8. Power series expansions. In this section we introduce the local pa-
rameters at a (smooth) point.

Let X = V(P) be an affine variety with P = (f1,..., fi) C Clz1,...,2y]
prime. For a € X, we denote M, := (1 — a1,...,T, — a,) the maximal
ideal of a. In the local ring Ox o = (Rx)yy,, define m, := ©(M, - Ox4) the

maximal ideal of Ox 4, where ¢ : Rx — Ox , with o(f) = {

Let D € Dergy o Then D can be extended to the Deropy , o in a unique
way by setting D(%) = g(a)D(];)(;)fQ(a)D(g)' Note that D(m2) = 0. D induces
a C-linear map d € (m,/m2)* : m,/m2 — C.

Theorem 1.8.1. The map
Dergy o — (mg/m2)*
Dw—d

is a C-linear isomorphism.

Proof. Linearity is immediately by construction.
(Inj). Let the image of D be 0, then D|y, = 0. D induces a C-linear map
Ox o/my(= C) — C. By Leibniz, D = 0.
(Surj). Let 6 € (my/m2)*. Define D : Rx — Cby D(f) := 6(p(f— f(a))).
"standard calculation”
Hence D € Derg, , and its image is 6. O

Remark 1.14. (1) Va € X, dim¢c m,/m?2 = dime 7, X < oo.
(2) From Exer.6, Assignment 1,
Derpy o — C"
D — (D(Z1),...,D(zy))

is injective and C-linear. Moreover,

n

Now identify D € Derg, o with its image d € (m,/m2)*. Let @ € m,/m2.
Then

d(w) = D(u) =
i=1
where u is any representative of @ in m,.

(@) D).

Definition 1.8.1. Let r = dim X. and Let a € X be a smooth point.
ui,...,ur € Ox, are called local parameters at a if uq,...,u, € m, and
their classes @1, . . ., %, € my/m2 form a basis of m,/m2. And m,/m? is called
the cotangent space of X at a.
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Remark 1.15. If uq, ..., u, € Ox, are local parameters at a, then rk(%(a)) =
T

Example 1.8.1. Let X = V(22 +4?> —1) C C% a = (0,1). Then T,X =
{(z,y) | y=1}. © € my is a local parameter since dz|y, jm2- y —1 € My is
not a local parameter since D(y) = 0, VD € Derg, o and %(a)D(a‘c) +
Hy— _
2-1(0) D () = 0.
Lemma 1.8.1 (Nakayama). Let R be a ring and M be a f.g. R-module.
Let I C R be an ideal. Then IM =M < dxr €1+ 1 s.t. zM = 0.

In particular, if Yo € 1+ I is invertible(e.g. I is mazimal), then IM =
M < M =0.

Proof. («). Clear.

(=). Let vy,...,v, € M be generators of M. IM = M implies that
Jaj; €I, 1 <i,j <nst —v = Zj a;jvj. Then we have (A + Ip,)v = 0,
where A = (a;5), I, is the identity matrix and v = (vy,. .. ,vp)T. Then by
multplying the classical adjoint matrix of A+ I(classical adjoint matrix S* of
matrix S'is s.t. SS* = (det S)I with I the identity). (A+1,)"(A+1,)v = 0.
But (A+1,)*(A+ I,) =det(A+ I,,)I,,. And det(A + I,) =1+ d for some
del. Hence (14+d)v; =0, Vi=1,...,n. Then (1+d)M =0 O

Corollary 1.8.1. Let R as before. Let I C R be an ideal s.t. every element
in 1+1 is invertible. Let M be a f.g. R-module and M’ C M be a submodule.
Then

M=IM mod M < M =M.

In particular, vi,...,v, € M generate M <= their classes v1,...,0, €
M/IM are generators.

Proof. Applying Lemma 1.8.1 to M/M’. Note that M = IM mod M’ <=
IM/M'" = M//M'. By Lemma 1.8.1, it is equivalent to 3z € 1+ I s.t.
xM/M' = 0. But «x is invertible. Therefore M /M’ = 0.

For the last statement, let M’ := span(vq,...,v,). O
Remark 1.16. In particular, if uq,...,u, € m, are local parameters, then
mg = (ul, e ,ur).

Let ui,...,u, € Ox,4 be local parameters, where a € X is a smooth

point. For any v € Ox 4, define v(y) := v—v(a) € mg. Then IA,..., A € C
s.t.
vy — Atur — = Ay € mg.
Let v(g) = vy — 2o Aiuy € m2. We can write v(2) = Y, wiT) for some
Wg, T € Mg
Again Jug;, vg; € C s.t.

2
Wk — E PeiUiy T — E Vi — U € My,
i i
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Hence
=3 (z s + mz) (z s+ mz)
k 7 )

3
= E Vi, j Uk U + M.
k.l

By repeating this procedure, we can construct homogeneous polynomial
vy € Clt1,...,t] of degree [ for any [ € N s.t.

k

v = Zv(l)(ul, ) Fmi L
1=0
Definition 1.8.2. The formal power series ring in t = (¢1,...,t,) is the
ring C[[t]] = C[[t1, ..., tr]] whose elements are infinite sum of the form
S=F+FFHR+---
where F; € Cl[ty,...,t;] is homogeneous of degree i.

And the operations are the following. Let ¥ = > H;.

<I>—|—\I/:ZF¢—|-Hz‘

U= "(> HjF)

i>0 j+k=i

Remark 1.17. (1) We can replace C by any other field.

(2) C cCft]).

(3) C[[t]] is an integral domain.

Definition 1.8.3. Let u € Ox , with a smooth point. Let wy,...,u, be

local parameters at a. A Taylor series for u is ® = > F; € C|[t1,...,t]]
s.t.

u— ZFi(ul,...,ur) emh V.

Example 1.8.2.

(1) X=C, a=0, mg = (x). Then Vg € Oxq has a unique Taylor series
21120 it wz’th 5 — 3K ot e (.

(2) == Zizo z'.

Theorem 1.8.2 (Weierstrass Preparation Theorem, [7],p139(simplified ver-

sion)). Let ® =3 | a;z;+ higher order terms. Assume that a; # 0. Then

for any ¥ € C[[z1,...,2z,]], there are unique A,B € C[[z1,...,z,]] s.t.
U =A%+ B.

Corollary 1.8.2. Cl[x1,...,z,]]/(®) = C[[z2, ..., zy]]
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Theorem 1.8.3. Vu € Ox, with a smooth point. Let ui,...,u, be local
parameters at a. There exists a unique Taylor series of u. Consequently, we
have a injective morphism
T O)(’a — C[[tl, . ,tr]]
u— 7(u)

where T(u) is the Taylor series of u.

Proof. Tt is sufficient to prove the following claim.

Claim. If F}, € C[ty,...,t,] is homogeneous of degree k and Fj(u1,...,u,) €
mk+l then [ = 0.

Indeed. We prove the claim in two steps.

Step 1. Consider the case that X = C", r =n, u1 = x1—a1,...,Un = Tn—
an, Mg = (1—a1,...,Ty—ay,). Thenm? = I (ri—a)™ | Yo, m; = k}.
In this case, if Fy(x1 —a1,..., oy, —ay) € mﬁ“, Fr, =0.

Step 2. Now we consider the general case that X = V(P) with P prime.
Assume, WLOG, that a = 0. We have

L=oiff

Hence the map Ocn o/POcn o — Ox, is an isomorphism. We have the
following commutative diagram.

It easy to see that Ocn o/ POcn g — Cllx1, ..., z,]]/PC|[z1,...,xy,]] is in-
jective. It remains to show that Cl[x1, ..., z,]]/PClx1,...,z,]] 2 C[[y1, ..., yr]].

By Theorem 1.6.1, there exist fi,..., fo—r € Clz1,...,25] s.t. POgng =

(&, In=my and PCllzy, . 20ll = (Fis s faer)Cllan, - o )]
If fi = > "0 aijzj+ hot, then tk(ag))i=1,..n—r = rk(gic;) =n—r. And up
=1 n

.....

to a linear change of coordinates we can assume that rk(a;;)1<i j<n—r = n—7.
By Theorem 1.8.2,

Cllx1y .-, zn]]/PC[[z1, ..., zn]] Z Cllzn—r+1, -, x4n]]-

Consider uq,...,u, € Cl[y1,...,yr]], then u; = Z;Zl bijy; with b;; €
Clly1,---,yr]]. Set B := (bi;) € Mat,.(C[ly1,...,yr]]). det B(0) # 0 since
ui, ..., u, form a basis of mg/m% and also y1,...,y, form a basis of mo/mg.
There exists B~ = det(B)~™'B*. Hence C[[u1,...,u,]] = C[y1,--.,v]])-
The claim follows from Step 1.

Now we have the morphism

T: OX,a — C[[tl, . ,tr]]
u— 7(u).
Let u € Ox 4 be such that 7(u) = 0. Then u € mk, Vk. Hence u € Ng>omk.

But mg(Ng>om?) = Ng>emk. Then by Lemma 1.8.1, Ng>om¥ = 0, hence
u = 0. Therefore, the morphism is injective. ([

Remark 1.18. (Formal Implicit Function theorem) Let ® = Y7 | a;x;+
higher order terms € C[[z1,...,zy]] s.t. a1 # 0. Then by Theorem 1.8.2,



ALGEBRAIC GEOMETRY 19

there exist A € Cl[x1,...,2,]] and B € C[[za,...,x,]] st. 1 = AD+ B
Note that A(0) # 0, then ® = (1 — B)A™!.

1.9. Analytic structure of smooth point.

Definition 1.9.1 ([2]). A complex manifold of complex dimension n is a
Hausdorff and 2nd countable topological space M together with a holomor-
phic atlas A = {(Un, ¢a) | @ € A}. i.e. M = U U, with U, C M open and
P © %1 1 p3(Ua NUB) = ¢a(Uy N Up) is holomorphic. And a homeomor-
phism ¢U, — V,, for some V, C C" open.

Remark 1.19. By 4 o gogl holomorphic we mean that it is C° and satisfies
the Cauchy-Riemann equations, which is

Theorem 1.9.1. If X C C" is an affine variety of dimensionr. Let U C X
be the set of smooth points. Then U is a complex manifold of dimension r.

1.10. Ox, is a UFD. ?

Proposition 1.10.1 ([4], Appendix 7). Suppose R is a Noetherian ring with
mazimal ideal M. Let R D R with mazimal ideal M be a local ring, which
is a UFD. If the following conditions are satisfied:

(1) MR = R,

(2) (M"R)NR =M™, Vn >0,

(3) Ve € R and ¥n >0, 3z, € R s.t. © —x, € M"R = M",

then R is a UFD.

Theorem 1.10.1. Let X be an affine variety of dimension r and a € X be
a smooth point. Then Ox , s a UFD.

Proof. (Sketch). We have seen that Ox , C C[[t1,...,t,]].
We use the fact that C[[t1,...,¢,]] is a UFD.(see details in [7]). Denote
Ox.q :=Cl[t1,...,t]] with maximal ideal ti,.
We prove by check the conditions in Proposition 1.10.1.
(1) (C) Clear.
(D) If wi,...,u, € Ox, are local parameters, then 7(u;) = t;, Vi =
1,...,r. Let ® € m,, then

¢ = Z@itiv pi € @X,a'
i=1
Then ® =37, @it(u;) € ma@X@
(2) (D) Clear.
(C) Let ® € (m?Ox.,4) NOx,q = W?Ox 4. Since ® € R, & = 7(u). Since
P emy, ue 0%,
(3) Clear.

2This part is a bit of mess. I will try to rewrite it in a more readable way.
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Remark 1.20. In general, Ry is not a UFD. (e.g. X = V(22 + 9%~ 1))

Corollary 1.10.1 (Geometric interpretation of UFD). Let X = V(P) with
P e Clxy,...,x,] prime. Let r = dim X and let a € X be a smooth point.
If f € Clz1,...,xy,) is such that

{ € Ox,q is irreducible,
then
PI = {g € (C[xlv"‘axn] ‘ kg € P+ (f)? k(C[fL'l,...,.an], k(a) 750 6}
is a prime ideal and X' := V(P') C X is an affine variety of dimension

r — 1. Such X' is called a subvariety of X of codimension 1. Moreover,

every subvariety of X of codimension 1 is of this form. In this situation,

{ € Ox,q is called a local equation of X' at a.

Proof. Let v be the composition of the following maps
Clz1,...,zn] = Rx = Ox,.

quotient map, ¢ : h > % Then P’/ = wil({_).
Since Ox 4 is a UFD and { is irreducible, ({) is prime. Hence 1/1_1({) is

prime.
Let X' := V(P’). Note that X’ & X. So dim X’ < dim X = r. But

n 1 = Oh
T, X' = {(x1,...,2,) €C ’;Eﬁ:i

(a)(z; —a;) =0, Vh € P}

={(z1,...,2,) € ToX | Zgj(a)(l“z —a;) = 0}.
i=1 "

Therefore dim 7, X’ > dim7,X — 1 =r — 1. We can assume WLOG that a
is also a smooth point of X’ since smooth points form a Zariski open subset.
Then we have
r—1<dimX’ <r.
Conversely, let a € X’ be such that a is a smooth point of X. Let
P = I(X') C Clz1,...,2,). Then (P )Ox,4 C Ox, and it is a prime

ideal. Let % € Y(P)Ox, \ {0}, can assume % is irreducible. Consider
1/1_1({) C Clw1,...,2y]. Since f is irreducible, we have

Xevetdyex

and hence r—1 < dimV(d)_l({)) < r. Finally we have X' = V(qp_l({)). O

Remark 1.21. Consider X = C, then Rx = C[X]. Every f € Rx is deter-
mined (up to scalar multiple) by its zeros.

Can write f as f = c¢(z — z1)" -+ (z — z)"*. Then f is determined by
(Zi7ui)a 1= 1,...,]6.
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Let Div(X) be the free abelian group generated by the set of all points of
X, which is
Div(X):={f: X — Z | |supp f| < oo}.
The elements have the form of formal sum Ele wizi > f: X =7, f(xr)=
wi if x = z;.
Moreover, if 5 € C(x) = C(X) with

f=c

—s L=

(:I: - Zi)uia Zq 7& Zj if 7&]’

(2

/
C

g=¢ L@ —w)™, wy #wit j#1,

1

<.
Il

then
f k m
— — Z,u,izi — Zl/j’wj.
g i=1 j=1

It is a bijection if Rx is a UFD.

Now we consider a more general case.

Definition 1.10.1. Let X be any affine variety. Let Z be the set of subvari-
eties of X of codimension 1. We define Div(X) as the free abelian group gen-
erated by Z. (Div(X) :={f,Z = Z | f(Z) # 0, for finitely many Z € Z})

Div(X) is called the group of divisors of X.

Remark 1.22. Note that any f € Div(X) can be written as the formal sum
> zez [(Z)Z. Conversely, any formal sum Zfi 1 iZ; correspondes to such
an f € Div(X).

Elements Z € Z are said to be prime divisors.

Now assume that X is smooth. Let f € Rx \0 and Z € Z. For a € Z,
consider a local equation % € Ox, of Z at a. Consider { € Oxq. Define
ordz(f) := ps.t. (2)#|L but (2)#+1 4 L. Note that ordz(f) doesnot depend
on a € Z. In fact, ordz(f) does not depend on a € Z.

So we get a map

frdiv(f) = ordz(f)Z € Div(X).

ZeZ

More generally, Vg € C(X), we can define

f _

div(=) := div(f) — div(g) € Div(X)

and such element is called the principal divisor.

Definition 1.10.2. Consider div(g) = geznzZ € Div(X). If ng > 0,

we call Z a zero for

QIf~,

. If ny <0, we call Z a pole for g.
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Remark 1.23. Let P(X) := the principal divisors. Note that P(X) C

Div(X) is a subgroup.

Definition 1.10.3. Let X be a smooth affine variety. The quotient group
Cl(X) := Div(X)/P(X)

is called the divisor class group or Picard group of X.

Remark 1.24. One can prove that in this smooth case, the general definition®
of Picard group is the same as the definition above.

Proposition 1.10.2. Cl(X) = {0} <= Rx is UFD.
Remark 1.25. Compare with X = C, we have

[] zec (z—2)"=
D = Lz =di nz20
Zn z = div Moo (=2

zeC nz<0

1.11. Morphisms between affine varieties.

Definition 1.11.1. Let X = V(P) € C" and Y = V(Q) C C™ be two affine

varieties. A regular map or morphism between X and Y is a function
o= (P, yom): X =Y

st. with ¢; : X — Cin Rx (i.e. ¢1,...,¢m are restrictions to X of

polynomials in Clxy,...,z,]).

Definition 1.11.2. Let ¢ = (¢1,...,¢m) : X = Y be a regular map and

a € X, we have the differential of ¢ at a

dago T, X — Tap(a)Y

0o ~ Dom

— O (@)(& = a:) + ¢r(a), - "; Dz, (a)(& — ai) + om(a)).
Remark 1.26. (Exer.) One can check that the differential is well defined by
using chain rule.

(gla---vfn)'_)(

Let ¢ = (¢1,---,0m) : X — Y be a regular map. It induces a ring
homomorphism

gp* : Ry — RX
frefoe
Definition 1.11.3. A regular map ¢ = (p1,...,0m) : X — Y is called
dominant if Y = p(X).
Proposition 1.11.1. Let ¢ : X — Y be a dominant regular map between
affine varieties. Then ¢* : Ry — Rx induces a homomorphism
" C(Y) = C(X).
In particular, dim X > dimY.

3isom0rphism classes of line bundles(or invertible sheaves)
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Proof. Note that if g € Ry \ 0, then ¢*(g) # 0, otherwise p(X) C {b €
Y | g(b) =0} &Y. Then ¢(X) # Y, contradiction. Hence we can define

go*(g) = % € C(X)) and it is a homomorphism. O
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1.12. Appendix. primary decomposition. Now We recall some com-
mutative algebra [6].

Definition 1.12.1. Let R be a ring and I C R be an ideal of R. [ is called
primary if whenever a,b € R are such that ab € I and a ¢ I, then b € V.

We have immediately that the radical of a primary ideal is prime.

Theorem 1.12.1 (Lasker-Noether decomposition theorem).
(1) Let R be a Noetherian ring, then every ideal I C R admits the so called
primary representation as
I'=Q1N---NQnN

where Q;’s are primary ideals of R.
Moreover, we can find Q1,...,QnN s.t.no Q; contains ﬂ#i Qj and

the associated prime ideals \/Q1, . ..,/ Qn are distinct. In this case it is
called irredundant primary representation.

(2) Let R be a ring and I C R be an ideal that admits an irredundant
primary representation

I:le'.mQN'
Then I =1 iff Q1,...,Qn are prime.

Theorem 1.12.2. Let R be a ring and I C R be an ideal admitting an
irreduandant primary representation

I=QiN---NQn.

Then the prime ideals P; := /Q; are uniquely determined by I. And they
are called the associated primes of I.

Example 1.12.1. Let I = (22,y) C C[z,y] be an ideal. It has an irreduan-
dant primary representation

I=(z%)N(y).
And its radical is
VI=(z)N(y).

More generally, let f € Clxy,...,zy,] and write f = glfl -'-ngN where g;
are 1rrd and not associated to each other. Then we have

(f) = (gy") N+ N (ghY)
And its radical is
(f)=(g)N---N(gn) = (g1 gn)-

Example 1.12.2. Let k be any field. Consider the polynomial ring k[z,y]
and ideal I = (2%, 2y). Then for any c € k,

I=(z)N(y—cx,z?)

is an irredundant primary representation of I.
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Question 1.12.1. What are the associated primes of I1¢
Corollary 1.12.1. Let I C Clxy ..., z,] be a radical ideal. Then there exists
unique prime ideals Py, ..., Py C Clzy...,x,] s.t.
I=PN---NPy
and P; # Pj, Yi # j.
1.13. Appendix. transcendental extension.

Definition 1.13.1. An extension K|k is transcendental if it is not alge-
braic(i.e. if do € K not algebraic over k).

Example 1.13.1. (1) Q(7)|Q is transcendental.

(2) Q(4)|Q is algebraic.
(3) Let k be any field and K be the fraction field of k[x1,...,x,], which is
K =k(z1,...,2,). Then K|k is transcendental.

Definition 1.13.2. Let K|k be a field extension. Let L C K. The elements
of L are said to be algebraically independent over k if Vaq,...,ay € L,
there is no f € klz1,..., 2] s.t. f(aq,...,an) = 0. In this case, L is called
a transcendental set over k.

Definition 1.13.3. A transcendental basis for K|k is a transcendental
set L C K over k that is not contained in any bigger transcendental set.

Remark 1.27. L C K is a transcendental basis for K |k iff K |k(L) is algebraic.

Example 1.13.2. {z1,...,z,} € k(z1,...,2,) form a transcendental basis
fork(zy,...,zn)lk.

Theorem 1.13.1. There exists a transcendental basis for any field exten-
ston. Moreover, any two transcendental basis have the same cardinality.

See Chapter II Sec.12 in [6] for the proof.

Definition 1.13.4. The cardinality of any transcendental basis for K|k is
called the transcendental degree of K|k, denoted by tr. deg(K|k).

Remark 1.28. tr.degR|Q = tr.deg C|Q = oo
1.14. Appendix. Localization.
Definition 1.14.1. Let R be a ring and P C R be a prime ideal. The

localization of R at P is
Rp:={(f,9) e RxR|g¢& P}/
where (f,9) (f',¢') iff 3h ¢ P s.t. (fg' — gf')h = 0.

One may view the element (f,g) € Rp as “5”,
We have a morphism
Q : R — Rp
f

f»—>I.
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And Vf € R\ P, ¢(f) is invertible. More generally, 5 is invertible in Rp if
f ¢ P and (g)_l = %

Let m := {g | f € P}. It is a (unique) maximal ideal of Rp and (Rp, m)
is a local ring.
Remark 1.29. If R is an integral domain then so is Rp.

Proposition 1.14.1. If R is Noetherian, then so is Rp.

Proof. Let I C Rp be an ideal and I := ¢~ !(I) C R. Since R is Noetherian,
I=1(f1,...,fm) for some f; € R.

Let w € I, then u = 5 and gu = f € I. Then gu = ¢(f). Hence
f e I. Tt follows that f = S hifi. Then gu = S ¢(hi)e(f;). Hence

(AS (‘P(fl)a"'v()p(f_m))' O
2. PROJECTIVE VARIETIES

2.1. Projective Space. We first define the projective space in our setting.

Definition 2.1.1. We define the complex projective n-space by P := C"+1\
{0}/ ~, where (ag,...,a,) ~ X ao, . ..,ay,) for some A € C*
For (ag,...,a,) € C""!, we denote its equivalence class in P" by [ag :
: ap] and it is called the homogeneous coordinates of the cooresponding
point.

Remark 2.1. There are also several other equivalent definitions, e.g.
P" = {L c C"™ | dim¢ L = 1}.

Remark 2.2. Let w: C""1\ {0} — P" by the quotient map, 7(aq, ..., a,) =
[ag : -+ : ap]. The Euclidean topology induces the quotient topology on P",
called the classical topology.

P™ is compact w.r.t. the classical topology and moreover, it is Hausdorff.

One can view P" as the compactification of C".

For any i = 0,...,n, define H; := {[ag : --- : ap] | a; = 0} and U; :=
P™\ H;. Then consider the map
agp ap—1 Gpi1 an
Dol = (—,... cey ).
[ao an] (ai’ ) a; ) a; ) 7@@')

It is easy to see that ¢; is bijective with inverse
qb;l :C" = U;
(205w oyzn) > zr o rzic Lrzipn oot 2y
Remark 2.3. ¢,¢ ! are continuous w.r.t. the classical topology. And A :=
{(Ui,¢i) | i=0,...,n} is a topological atlas of P™.

If j <4, ¢; 0 i~ ! is holomorphic on C"\ {z;41 = 0} = ¢;(U; N U;). In
particular, A is a holomorphic atlas and then P" is a complex manifold.
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It follows that P* = C*"U H, = C*UP 1 =CcrucCcrtu.-..uco.
Remark 2.4. H; is called “the point at co”.
Definition 2.1.2. A closed algebraic set in P" is a subset P” of the form

V(fi, s fm) ={lao: -~ an] | filao,...,an) =0, j=1,...,m}
where fi1,..., fm € Clzg,...,z,] are homogeneous.
Remark 2.5. We could have required every f € Clxy, ..., z,](not necessarily

homogeneous) to be
f(Xag, ..., ay) =0, YA€ C*.

We can write f = >, f) where f(,) are the homogeneous components of
degree k. Then the condition above is equivalent to

f(k)(a07 sy an) — 07 ij

Proposition 2.1.1. Let fi,..., fm € Clzo,...,x,] be homogeneous. Let
I=(f1,...,fm) CClxo,...,zy]. Then I is an homogeneous ideal(i.e. Vf €
I, its homogeneous components fy) € I ).

Conwversely, if I C Clzg,...,x,] is a homogeneous ideal, then there exist
fi,.-, fm € Clzo, ..., x,) homogeneous s.t. I = (fi,..., fm).

Proof. Let g = >"", hif; € I. Then the homogeneous components of g are

Iy = D hg—dea s fi € 1, V.

i=1
Conversely, if I is homogeneous. Take generators I = (f1,..., fm), then
(fz)(k) €l, Vi,k. Then I = ((fl)(k), ceey (fm)(k) ’ vk > 0) (]

Lemma 2.1.1. Let I C Clxg,...,x,]| be an ideal. For any X € C*, set
I’ = {f* = f(\xo,..., \xn) | f € I}. Then

I is homogeneous <= I =I* VX e CX.

Proof. (=) (C) Write f = (f§))‘ If T is homogeneous, then fx € I, Vf €
I, \

(D) Let fA € I, f € I. Write f = > f()- Since I is homogeneous,
f(k) € I. Then )\kf(k) € I. It follows that f>‘ =53 /\kf(k) el.

(<) Let f € I. Write f = 3 fu). Then f* = S AFf;y € I. Let
d:=deg f = max{k | fx) # 0}. Let Ao,...,Aq € C* be such that

L A - M
[Tov-2=1: : i [#0

r
'~ L Ag - A
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Then we have

fAo I AN L0
. _ . . . . c IEBd-i—l
f/\d 1 Mg - )\g f( )
Therefore
~1
f(o) 1 X -0 A fro
=1: = - : c [Pd+l
f( A 1 Ay - Ag f>\d
and f(k) el, Vk.
O
Proposition 2.1.2. Let I C Clxg,...,zy] be a homogeneous ideal. Let

VI = Pin---N Py be the irredundant primary representation. Then
\ﬁ, Py, ..., Py are homogeneous.

Proof. By Lemma 2.1.1, if I is homogeneous, then I = I*, VA. Hence
VI =+ I*. We have that v/T is homogeneous.
Moreover, VI* = /I = P, N---N Py is an irredundant primary repre-
sentation of v I*. Hence
VD =PMn---n Py, YA

And for any ¢ = 1, ..., N there is a j such that PZ-)‘ = P; for infinitely many

-1
{Ai}i>1. Then PZ-/\’“)\1 = P, for every k.
Hence VI, P; are all homogeneous. O

2.2. Projective Varieties. We have the following results which are similar
with the affine case.

Proposition 2.2.1. Let I, 15,1, C Clxg,...,z,], o € A be homogeneous
tdeals. Then
(1) If I, C Iy, then V(L) C V(I,),
(2) V() UV (L2) =V(IiNIl)=V(I1 - I2) (IiIs = {fg|f € ,g € I2}),
(3) V(Xacala) =NacaVa),
4) V(VI) =V (I)

(VI ={f €Cla1,...,x,) | X €T for some K > 0}).

Remark 2.6. From Proposition 2.2.1, if /T = P;N---NPy is an irredundant
primary representation, then

V(VI)=V(P)U---UV(Py).
Since P; # Pj if i # j, V(P) # V().
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Definition 2.2.1. The Zariski topology in P" is the topology whose closed
subsets are the closed algebraic set in P".

Definition 2.2.2. A projective variety is an non-empty set X C P" of

the form X = V(P) for some homogeneous prime ideal P C C[zo, ..., zy].
In this case, Rx : Clxg,...,z,]/P is the homogeneous coordinate

ring of X.

Remark 2.7. Let f € Clxg,...,x,] be homogeneous. In general, it doesn’t

define a “function” X — C.

Remark 2.8. If I & Clxo, ..., ] is a homogeneous ideal, then I C (o, ..., zy).
Note that V(zo,...,z,) = @.

Theorem 2.2.1 (Hilbert’s Nullstellensatz). Let I C Clxo,...,zy] be a ho-
mogeneous ideal. Let f € Clxo,...,x,] be homogeneous of degree deg f > 1.
If f(a) =0, Ya € V(I), then f € VI.

Proof. Case 1. If V(I) = @, then {a € C"™! | g(a) = 0, Vg € I} is either
empty or {0}. If it is empty, then I = C[zy,...,z,] and by Theorem 1.2.1,
f € VI. If it is {0}, then again by Theorem 1.2.1, VI = (2,...,2).
Since deg f > 1, f € V1.

Case II. If V(I) # @, then {a € C"*! | g(a) =0, Vg€ I} = 7Y (V(I))U
{0} where 7 : C"*1\{0} — P" is the quotient map. Then by Theorem 1.2.1,
f(a) =0, Ya € 7~ Y(V(I)) U {0} implies that f € v/T. O
Remark 2.9. We don’t have I(V(.J)) = /J in the projective setting.
Remark 2.10. Let I C C|xo,...,zy] be a homogeneous ideal. The set C' :=

{a € C""! | g(a) =0, Vg € I} is a cone and it is called the affine cone of

V(I).

Corollary 2.2.1. Let I C Clxog,...,zn] be a homogeneous ideal. Then

V()= (inP") < VI=Clxg,...,z,] or VI = (20,...,2,)

Proposition 2.2.2. Fori=0,...,n, let

ao a; an,

20 2 .

Then ¢; is an homeomorphism w.r.t the Zariski topology.

Moreover,

(1) If P C Clxo,...,zy] is a homogeneous prime ideal, X = V(P), then
QZSZ(X \ (X N Hi)) = (bZ(X N Uz) = V(P/) with P’ = {f(yl,...,li —
thy...yn) | f € P} CCly1,...,yn] is an affine variety.

(2) Conversely, if Q' C Cly1,...,yn] is a prime ideal, then

o7 (V(Q) =V(Q)
where Q) is generated by the set {xfg(%,,%,,%) |ge@,d=
degg}.

[ao:‘--:an]rﬁ(ai,...,ai,...,ai
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Proof. Consider the case i = 0 (other cases are similar). Consider the maps

«a, B.

Defined by
[ f(xOV"a:En) = f(lvyla---ayn)
d +T1 T,
g — e,
ﬁ g xog(:(}o’ ’xO)

Note that 3(g) is homogeneous of degree d. a(5(g)) = g. But B(a(f)) #
f. However, if f is homogeneous and xo 1 f then B(a(f)) = f.

Let Y € P*\ Hy = Uy be a Zariski closed subset. Let Y be the Zariski
closure of Y in P". Then

?:V(fh?fm)

for some homogeneous fi,..., f,m. And since Y =Y N Uy,

¢o(Y) =V(a(fr),.--,a(fm))

Hence ¢q is closed.
Conversely, If Z =V (g1,...,9m) C C" is a closed algebraic set. Then

¢o (Z) =V (B(91),- -, B(gm)) N V.

Hence ¢q is continuous.

(1) Let P C Clzg,...,zy,] be a homogeneous prime ideal. X = V(P) C P"
is a projective variety. We have seen that

do(X NUp) = V(P') c C"

where P/ = o(P) C Cly1, ..., yn)-

Claim. P’ is a prime ideal.

Indeed.

WLOG we can assume that xg ¢ P. Otherwise X = V(P) C Hp, i.e.
1 € a(P) and then P = Cly1,...,yn)

Note that B(a(f)) € P, Vf € P. Indeed, If f = af' f with z { f,
then B(a(f)) = B(a(f)). Since zo ¢ P, f € P. Now it is sufficient to
consider the case where zg 1 f.

Write f = ZZZO f(x) where d = deg f. Since P is homogeneous,
f(k) € P. Then

a(f) = 3 alfw)
k
) =t 30l (g ) = Do Bletw)
k

where e = deg a(f(r))-
Note that S(a(fm))) = f(k)

But since f(;) € P and zo ¢ P, f;—'{%) € P implies that f(« (f(k ) € P, Vk.
Hence B(a(f)) € P
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Now let g,h € Cly1, ..., yn] be such that gh € P’. Then there exists
f € Ps.t. gh=a(f). Then 5(9)8(h) = B(gh) = B(a(f)) € P. Since P
is prime, either §(g) € P or B(h) € P. Hence either g € P’ or h € P’.
(2) Similar. O

Corollary 2.2.2. If X C P" is a projective variety. U; := P" \ H;, i =
0,...,n. Then

X=X nw).
=0

Example 2.2.1. Conseider X =V (zy — 22) C P2

InP2\V(z), X\ (XNV,) 2 V(u—0v?) CC% And XNV (z) ={[0:1:0]}

P2\ V(z), X\(XNV,)=2V(st—1)CC? And XNV (z)={[0:1:
0],[1:0:0]}.
Definition 2.2.3. Let X = V(P) C P" be a projective variety.
(1) For any a = [ag :,- - : ay] € X, the local ring at a in X is

)

{5 | f,9 € Clxq,...,z,] homogeneous of the same degree, g(a) # 0}

Ox.a:

)

a {g | f,g € Clzo, . .., 2] homogencous of the same degree, g(a) #0, f € P}
(2) The function field of X is defined as
{g | f,g € C[xg,...,z,] homogeneous of the same degree, g ¢ P}

C(X) := .
() {g | f,9 € Clxo,...,z,] homogeneous of the same degree, g ¢ P, f € P}
(3) For any a = [a :o:, - : ay] € X, the tangent space of X at a is
ToX = Der(Ox q, a)
(4) dim X := tr.dege C(X).
(5) a € X is smooth iff dim7,X = dim X. a € X is singular if it is not
smooth.

Remark 2.11. (Under the previous notations)
(1) If a € X NU;, then

Ox.a = Og,(xnU),¢:(a)
holds for i = 0,...,n.

Indeed. Take, WLOG, i = 0. Recall the map «,( in the proof
of Proposition 2.2.2. We have seen that phio(X N Up) = V(a(P)).
Note that if ¢ € C[zg,...,z,| is homogeneous and g(a) # 0, then
a(g)(po(a)) # 0. Hence o induces a homomorphism

Ox.a = Og,(xnU;),é:(a)
[ alf)

g alg)

(surj.) Let % € Oy, (xnUy),éi(a) % = 2



32 ZIWEI WEI

(inj.). Clear.
Moreover, this map sends the ideal generated by P to the ideal gen-
erated by P’ = a(P). Then the statement follows from

0 Ocr p0(a)
¢0(XNUo),d0(a) P'Ocn 40(a) :
60

1%

See the proof of the theorem about the univity of Taylor series.
(2) f X & Hyie. XNU; # @, then C(X) = C(¢(X NU;).
In particular, C(X) = Frac(Ox,) Va € X.
Indeed. The first isomorphism is induced as in (1). The second
isomorphism follows the fact that

C(¢1(X N UZ)) = Fra‘c(od)i(XmUi)vd)i(a))'

Proposition 2.2.3. Let X = V(P) C P" be a projective variety. If XNU; #
&, i=0,...,n, and let a € X NU;. Then dim X = dim ¢;(X NU;) and a is
a smooth point of X iff phi;(a) is a smooth point of ¢;(X NU;).

Proof. From remark 2.11 (2), we have
dim X = tr.degc C(X) = tr.dege C(¢i(X NU;) = dim ¢;(X N T;).
And from remark 2.11 (1), we have
Derox’ma =~ Der@%(xwi)!wa%@(a) = DeTR%(xrwi),@(a)'
(xnosydila) T ¢i(a). Then
dim7,X > dimX

Moreover, Ty, (q) = Derg o

and equality holds iff a is smooth in X. ([l

Remark 2.12. Let X = V(P) C P™ be a projective variety. Consider the
affine cone over X

C={a=(ag,...,a,) € C"™| f(a) =0, Vf € P} c C"L.
Then dimC =dim X +1

Example 2.2.2. Let fi,..., f;m € Clxo,...,x,] be homogeneous of degree
1. Let P := (fi,...,fm) and X = V(P). (Assume X # &). Then X
is a projective variety of dimension dim X = n —rk A where A = (aj) €
Matmﬂﬂ ((C) with fj = ZZ:O QjfTh-

Indeed. Letic€ {0,...,n} s.t. a € U;. Then ¢;(X NU;) C C" is a linear
space of dimension n —rk A.

Take, WLOG, i = 0. X = {[zo : -+ : z) | Dfppajpzr = 0,5 =
1,...,m}. Take yx = i—’g, then

¢0(X N UO) = {(yh e vyn) ’ Zajkyk’ = _aj()}
k=1

Exercise 2.2.1. In this case, X is homeomorphic to PI™X,
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Exercise 2.2.2. If f = Y  ciz; is homogeneous of degree 1 and H :=
V(f), then

P*"\H — C"
ap aq ag
fao,---,an,'“’fao ----- an7“"fao ----- an

where 7 i js such that ¢; # 0. Such H is called an hyperplane.
ag

[ag : -+ ap] — (

Proposition 2.2.4. Let X C P" be a projective variety of dimX = n —
1. Then X = V(f) for some f € Clxo,...,zy] irreducible homogeneous
polynomaal.

Such X are called hypersurfaces

Proof. Assume X = V(P) for some homogeneous prime P. Let f € P\ 0 be
of minimum degree. Note that f is irreducible. Then X = V(P) C V(f).
Assume by contradiction that Ja € V(f) \ X.

Case 1. Ji € {0,...,n} s.t. X NU; # & and a € U;. Then

Gi(XNU;) & os(V(f)nU;) cC”

of the same dimension n — 1. Contradiction.

Case 2. Nosuch i s.t. XNU; # @. And a ¢ U;. Then 35 € {0,...,n}
s.t. X C Hj. Hence z; € P . Since z; is an element of minimal degree of
P, X = H;. By Case 1., replace f with x;. ([

Example 2.2.3 (Quadrics). Let f € Clzo,...,x,] be homogeneous irre-
ducible polynomial of deg f = 2. WLOG, assume that

.
f=2
i=0

where 1 is called the rank of f. X =V (f) is called a quadric in P".
Consider X N Uy, for k=0,...,n.
Case 1. k <r. Then ¢p(X NUx) = V(14 3, 4 y?) CC" y; =2 isa

Tk
smooth hypersurface since the Jacobian (2yo, ..., 2Yk, ..., 2y,) s full rank.
Case 2. k> 1. Then ¢pp(X NUg) =V (X ov?), yi = o= The Jacobian

x
(2y07"'72y7’) isoforany(you"'7y7€7"‘7yn) = (07"'707y7‘+17"')gﬁ€7”'7yn)'
Hence If r <n, X contains singular points. X is smooth iff r = n.

Exercise 2.2.3. f =22 + Y I_, 2?7 is irreducible < A= -4 27 €

1=1""1
Clz1,...,zy] is not a square.

2.3. Divisors.

Definition 2.3.1. Let X = P™ be a smooth projective variety. A prime
divisor is a subvariety Z C X of codim Z = 1.

Definition 2.3.2. Let Z be the set of all prime divisors of X. We define
the group of divisors Div(X) of X as the free abelian group generated by
Z.



34 ZIWEI WEI

D € Div(X) is called a divisor of X and
D= nzZ
ZeZ
where ny € Z and only finitely many of nz # 0.
Remark 2.13. For any Z € Z and a € Z, if a € U; for some 7, then
$i(ZNU;) C oi(X NUy)
is a prime divisor.

Moveover, Ox o = Oy, (xnU;),4:(a)- Recall that we have defined the notion
of the local equation of ¢;(Z NU;) in ¢;(X N U;), which is an irreducible
Uz € O¢i(XmUi)z¢i(a) viewed in OX,a-

Let w € C(X)\0. Then for any Z € Z, choose a € Z and a local equation
Uy € OX@.

Define the order of u at Z as ordg, zny,)(u) in affine case, where we
identify C(X) = C(¢;(X NU;)) and a € X NU;. One can prove that this
definition does not depend on a.

Note that ordz(u) # 0 only for finitely many Z. Then we can define
div(u) := Y czordz(u)Z € Div(X). It is called a principal divisor.

Moreover, div(uv) = div(u) + div(v), — div(u) = div(u~!). Hence the set
P(X) of principal divisors is a subgroup of Div(X).

Definition 2.3.3. The divisor class group of X is the group
Cl(X) := Div(X)/P(X).
Proposition 2.3.1. CI(P") = Z.
Proof. We have seen that Z € Z corresponds to Z = V/(f) for some irre-

ducible f € Clzg,...,x,). We can define deg(Z) := deg(f). And this can
be extended to a group homomorphism

deg : Div(P") — Z
Z TLZz — Z nyg deg(Z).

A A
We have the following short exact sequence

0 — ker(deg) — Div(P") &8 7 0.

Claim. ker(deg) = P(P").
Indeed. Let u = 5 € C(P™) where f,g € Clxo,...,z,] are homogeneous
polynomials of the same degree. Factorize f, g

M
F=T]rL deg(f) = prdeg(f)
k=1

N
f=119 deglg) =>_ videg(gr).
k=1
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Hence div(u) = Y0, iV (fi) — Yoy iV (ge) and deg(u) = deg(f) —
deg(g) = 0.
On the other hand, if D € Div(P™) has deg(D) = 0, we can write

M N
D = ZMka - ZVlYl
k=1 =1

where pg, v are positive and Z, = V(fx),Y; = V(g;) for some f, g;.

m
Therefore D = div(ll__[[J;’“yf ). O
l

Remark 2.14. Let X C P™ be a smooth projective variety of dim X = 1. We
have the following exact sequence

0= J(X)(2C9/A) — Pic(X) & 7z 0
where A(=2 Z29) < CY is a lattice of maximal rank and g is the topological
genus of X.

2.4. Grassmannians. A good reference is [2]

Definition 2.4.1. Let V be a n-dimensional vector space over C. Let
1 < k < n. The grassmannian is the set
Gr(k,V):={W CV | W is a subspace of dim(W) = k}.
We write Gr(k,n) for V.= C".
Remark 2.15. This definition can be extended to any field k of chark # 2.

Example 2.4.1. (1) Gr(1,n) = P*" 1
(2) Gr(n —1,n) = (Pr~HV.

In general, given W € Gr(k,n) and choose a basis of W: v; = Ej ajjej, i =
1,...,k where e; is the standard basis of C®. We can represent W with
A = (aij) € Maty ,(C) (tk A = k).

For A, A’ € Maty,,(C), if there exists C' € GL;(C) such that A’ = CA,
then they represent the same subspace W.

Now for any multi-index I = (i1 < --- < i), define

Ur:={W eGrp, | WnSpan(e; | j ¢ I) = {0}}.

Note that
W eUr <= W®Span(e; | j¢1)=C"
<= if v1,..., v, form a basis of W then v1,..., v, e;, j ¢ I form a basis of C"

< if A € Maty,,,(C) represent W then det A # 0
— det(AWD = (A", ... A%) £0.

It follows that any W € Uy is represented by a unique A € Maty, ,(C) s.t.
AU = Ip. Indeed, if W is represented by A, then AD) € GL,(C), hence
A" = (AD)~1 A represents W and (A)D = I,
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Define
1 : Uy — CH"=F) (= Maty, ,_4(C))
W (AY) | 5 ¢ 1.

where A is the representative of W s.t. AD) = I, ¢; is a bijection. And
we can endow Uj with the unique topology such that ¢; is homeomorphism
w.r.t the classical topology on CF—k),

Since Gr(k,n) = UrU;, we can consider the smallest topology on Gr(k,n)
generated by the topologies on Ur. And with this topology Gr(k,n) is a

compact, Hausdorff topological space. And ¢; o (ﬁl_l is C*. We have that
Gr(k,n) is a smooth manifold.

Remark 2.16. There is a better way to proceed. Consider the action of
GLx(C)

GLx(C) x {A € Maty ,(C) | tkA =k} — {A € Maty,(C) | rkA =k}
(C,A) — CA.
Then Gr(k,n) = {A € Mat;, ,(C) | rkA = k}/GL;(C) with the quotient

topology and it is a smooth manifold.

Lemma 2.4.1. Let 7 € A* V'\ {0} where V is a n-dimensional vector space
over C.

Then dim{w € W | 7 Aw = 0} < k and the equality holds iff T is
decomposable, i.e. T =vi A+ Avg.

Proof. Let wy,...,wn be the basis of {w € W | 7 Aw = 0}. Complete
Wi, ..., Wy to abasis of V as wi, ..., Wy, Wntt, ..., wy. Then T =3, Prwy
for multi-index I = (i1 < --- < ig). We have

O:T/\wj:ZPIwI/\wj
I

:ZPIwI/\wj
I
J¢1
=>P[:Oifj¢f, Vi=1,...,m.

But |I| = k and 7 # 0, hence k > m. Moreover, if k = m, then Py = 0 if
I#{1,...,m}. Hence 7 = w1 A -+ A\ wg.
Conversely, if 7 =wv1 A--- Avg # 0, then

dim{w € W | 7 Aw = 0} = Span(vy, ..., vg)
and it has dimension k. ]
Theorem 2.4.1 (Pliikker embedding). We have an injective map.
P Gr(k,n) — PG)1

Moreover, the image of P, still denoted by Gr(k,n), is a closed algebraic
set.
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Proof. Let W € Gr(k,n). Choose a basis {v1,...,v;} of W and consider
vi A - Avg € A¥FC™. Define the map
k
P:Gr(k,n)— IP’(/\ Cc"™)
Wi [ug A Ayl

Identifying /\k cr =) we get map to the projective space.
Moreover, P is injective. Indeed, if P(W) = P(W’), then for basis {v;}
for W and {v}} for W',
ViAAvg =] A Ao, A € CFL
Since W ={v e C" | vy A--- Aoy Av =0} = W'. And moreover,
P(W) = [v1 A v

= > Prej]

I=(1<i1 <-<ip<n)
= [Pr | I].
Pr are called the Pliicker coordinates of W.
Claim. Gr(k,n) C P() =1 is a closed algebraic set.
Indeed. We know that Gr(k,n) = {[r] € P(A\F C") | s.t. 7 = vy A- - -Aug}.
Consider the linear map
k+1
f:cr— Acr
V= T A.

7 decomposable <= dimkerf =%k <= rkf=n—k.
Let B := {ei,...,en} be the standard basis of C” and C := {e; | I =
(iy < -+ <'ipe1)} be the basis of A¥T1C". Represent f w.r.t. these basis

as
B _
MC (f) =Ae€ Mat(kil)’"((c)
where entries of A are coefficient of 7. Since 7 is decomposable, the de-
terminants of all (n — k + 1) minors of A are 0, which are polynomials in

Pr. (]

Example 2.4.2. The first non-trivial ezample is Gr(2,4) C P5.
Ur = C*, hence Gr(2,4) is an hypersurface in P°.

Theorem 2.4.2. Gry,, C PGt is q projective variety of dimension k(n —
k). Moreover, the ideal generated by

k+1

> (1) LTI A S Y

a=1
for any two sequence 1 < i1 < -+ < Jp—1 <n, 1 < j1 < -+ < gpr1 < nois
prime and V(P) = Gry, .
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