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1 The Ring of symmetric functions

Consider the ring Z[x1, . . . , xn] of polynomials in n independent variables

x1, . . . , xn with rational integer coefficients. The symmetric group Sn acts on

this ring by permuting the variables, and a polynomial is symmetric if it is

invariant under this action. The symmetric polynomials form a subring

Λn = Z[x1, . . . , xn]
Sn .

Λn is a graded ring: we have

Λn =
⊕
k⩾0

Λk
n

where Λk
n consists of the homogeneous symmetric polynomials of degree k,

together with the zero polynomial.

For each α = (α1, . . . , αn) ∈ Nn we denote by xα the monomial

xα = xα1
1 . . . xαn

n .

Let λ be any partition of length ⩽ n. The polynomial

mλ(x1, . . . , xn) =
∑

xα (1)

summed over all distinct permutations α of λ = (λ1, . . . , λn), is clearly sym-

metric, and the mλ (as λ runs through all partitions of length ⩽ n) form a

Z−basis of Λn. Hence the mλ such that l(λ) ⩽ n and |λ| = k form a Z−basis

of Λk
n; in particular, as soon as n ⩾ k, the mλ such that |λ| = k form a

Z−basis of Λk
n.

I will supply a proof that the (mλ) consists a Z−basis of Λn.

Proof. We proof by induction on the degree of the symmetric polynomial f .

When degf = 1, f = a(x1 + . . .+ xn) = amλ for some nonzero a ∈ Z and

λ = (1, 0, . . . , 0).
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Now choose the monomial xλ in f such that λ is maximal in lexicographic

ordering and the coefficient aλ ̸= 0. Assume |λ| = k+1. Since f is symmetric,

aλmλ is in f . Substract aλmλ form f we then get a symmetric polynomial

with smaller lexicographic ordering. Continue this process and after finite

steps, we can subtract all the aλmλ in f such that |λ| = k + 1. We get a

symmetric polynomial g of degree k, and the induction shows that g is a

finite linear combination of mλ with integer coefficients and |λ| ⩽ k. Thus,

f is a finite linear combimation of mλ. We thus see (mλ) indexed by all the

partitions spans Λn over Z. That they are linearly independent follows from

the fact that these n variables x1, . . . , xn are algebraically independent.

In the theory of symmetric functions, the number of variables is usually

irrelevant, provided only that it is large enough, and it is often more con-

venient to work with symmetric functions in infinitely many variables. To

make this idea precise, let m ⩾ n and consider the homomorphism

Z[x1, . . . , xn] → Z[x1, . . . , xn]

which sends each of xn+1, . . . , xm to zero and other xi to themselves. On

restriction to Λm this gives a homomorphism

ρm,n : Λm → Λn

whose effect on the basis (mλ) is easily dascribed; it sends mλ(x1, . . . , xm)

to mλ(x1, . . . , xn) if l(λ) ⩽ n, and to 0 if l(λ) > n. It follows that ρm,n is

surjective. On restriction to Λk
m we have homomorphisms

ρm,n : Λk
m → Λk

n

for all k ⩾ 0 and m ⩾ n, which are always surjective, and are bijective for

m ⩾ n ⩾ k.
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We now form the inverse limit

Λk = lim
←−
i

Λk
n

of the Z−modules Λk
n relative to the homomorphisms ρkm,n: an element of Λk

is by definition a sequence f = (fn)n⩾0, where each fn = fn(x1, . . . , xn) is a

homogeneous symmetric polynomial of degree k in x1, . . . , xn, and fm(x1, . . . , xn, 0, . . . , 0) =

fn(x1, . . . , xn) wheneverm ⩾ n. Since ρkm,n is an isomorphism form ⩾ n ⩾ k,

it follows that the projection

ρkn : Λk → Λk
n,

which sends f to fn, is an isomorphism for all n ⩾ k, and hence that Λk

has a Z−basis consisting of the monomial symmetric functions mλ (for all

partitions λ of k) defined by

ρkn(mλ) = mλ(x1, . . . , xn)

for all n ⩾ k. Hence Λk is a free Z−module of rank p(k), the number of

partitions of k.

Now let

Λ =
⊕
k⩾0

Λk,

so that Λ is the free Z−module generated by the mλ for all partitions λ. We

have surjective homomorphism

ρn =
⊕
k⩾0

ρkn : Λ → Λn

for each n ⩾ 0, and ρn is an isomorphism in degrees k ⩽ n.

It is clear that Λ has a structure of a graded ring such that the ρn are

ring homomorphisms. The graded ring Λ thus defined is called the ring of

symmetric functions in countably many independent variables x1, x2, . . . ,
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2 Elementary symmetric functions

For each integer r ⩾ 0 the rth elementary symmetric function er is the sum

of all products of r distinct variables xi, so that e0 = 1 and

er =
∑

i1<i2<...<ir

xi1xi2 . . . xir = m(1r)

for r ⩾ 1. The generating function for the er is

E(t) =
∑
r⩾0

ert
r =

∏
i⩾1

(1 + xit) (2)

(t being another variable), as one sees by multiplying out the product on the

right. (If the number of variables is finite, say n, then er)(i.e. ρn(er)) is zero

for all r > n, and (2) then takes the form

n∑
r=0

ert
r =

n∏
i=1

(1 + xit),

both sides now being elements of Λn[t].

For each partition λ = (λ1, λ2, . . .) define

eλ = eλ1eλ2 . . .

Let λ be a partition, λ
′
be its conjugate. Then

eλ′ = mλ +
∑
µ

aλµmµ (3)

where the aλµ are non-negative integers, and the sum is over partitions µ < λ

in the natural ordering.

Proof. When we multiply out the product eλ′ = eλ′1
eλ′2

. . ., we shall obtain a

sum of monomials, each of which is of the form

(xiixi2 . . .)(xj1xj2 . . .) . . . = xα,
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say, where i1 < i2 < . . . < i
′

λ1
, j1 < j2 < . . . < j

′

λ2
, and so on. If we now enter

the numbers i1, i2, . . . , i
′

λ1
in order down the first column of the diagram of λ,

then the numbers j1, j2, . . . , j
′

λ2
in order down the second column, and so on,

it is clear that for each r ⩾ 1 all the symbols ⩽ r so entered in the diagram

of λ must occur in the top r rows. Hence α1 + . . . + αr ⩽ λ1 + . . . + λr for

each r ⩾ 1, i.e. we have α ⩽ λ. Hence,

eλ′ =
∑
µ⩽λ

aλµmµ

with aλµ ⩾ 0 for each µ ⩽ λ, and the argument above also shows that the

monomial xλ occurs only once, so that aλλ = 1.

We have

Λ = Z[e1, e2, . . .] (4)

and the er are algebraically independent over Z.

Proof. The mλ form a Z−basis of Λ, and (3) shows that the eλ form another

Z−basis: in other words, every element of Λ of Λ is uniquely expressible as

a polynomial in the er.

When there are only finitely many variables x1, . . . , xn, (4) states that

Λn = Z[e1, . . . , en], and that e1, . . . , en are algebraically independent. This is

the usual statement of the ”fundamental theorem on symmetric polynomi-

als”.
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3 Complete symmetric functions

For each r ⩾ 0 the rth complete symmetric function hr is the sum of all

monomials of total degree r in the variables x1, x2, . . ., so that

hr =
∑
|λ|=r

mλ

In particular, h0 = 1 and h1 = e1. It is convenient to define hr and er to be

zero for r < 0.

The generating function for the hr is

H(t) =
∑
r⩾0

hrt
r =

∏
i⩾1

(1− xit)
−1. (5)

To see this, observe that

(1− xit)
−1 =

∑
k⩾0

xk
i t

k,

and multiply these geometric series together.

From (2) and (5) we have

H(t)E(−t) = 1 (6)

or, equivalently,

n∑
r=0

(−1)rerhn−r = 0 (7)

for all n ⩾ 1.

Since the er are algebraically independent, we may define a homomor-

phism of graded rings

ω : Λ → Λ

er 7→ hr
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Using (7) and mathematical induction we can see ω(hr) = er for r ⩾ 0. This

shows that ω is an involution.

It follows that ω is an automorphism of Λ, and hence from (4) that

Λ = Z[h1, h2, . . .] (8)

and the hr are algebraically independent over Z.

As in the case of the e
′
s, we define

hλ = hλ1hλ2 . . .

for any partition λ = (λ1, λ2, . . .). By (8), the hλ form a Z−basis of Λ. We

now have three Z−basis, all indexed by partitions: the mλ, the eλ, and the

hλ, the last two of which correspond under the involution ω. If we define

fλ = ω(mλ)

for each partition λ, the fλ form a fourth Z− basis of Λ.

4 Power sums

For each r ⩾ 1 the rth power sum is

pr =
∑

xr
i = m(r).

The generating function for the pr is

P (t) =
∑
r⩾1

prt
r−1 =

∑
i⩾1

∑
r⩾1

xr
i t

r−1

=
∑
i⩾1

xi

1− xit

=
∑
i⩾1

d

dt
log

1

1− xit
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so that

P (t) =
d

dt
log

∏
i⩾1

(1− xit)
−1 =

d

dt
logH(t) =

H
′
(t)

H(t)
. (9)

Likewise we have

P (−t) =
d

dt
logE(t) =

E
′
(t)

E(t)
(10)

From (9) and (10) we obtain

nhn =
n∑

r=1

prhn−r (11)

nen =
n∑

r=1

(−1)r−1pren−r (12)

for n ⩾ 1, and these equations enable us to express the h
′
s and the e

′
s in terms

of the p
′
s, and vice versa. The equation (12) are due to Issac Newton, and

are known as Newton’s formulas. From (11) it is clear that hn ∈ Q[p1, . . . , pn]

and pn ∈ Z[h1, . . . , hn], and hence that

Q[p1, . . . , pn] = Q[h1, . . . , hn].

Since the hr are algebraically independent over Z, and hence also over Q, it

follows that

ΛQ = Λ⊗Z Q = Q[p1, p2, . . .] (13)

and the pr are algebraically independent over Q.

Hence, if we define

pλ = pλ1pλ2 . . .

for each partition λ = (λ1, λ2, . . .), then the pλ form a Q−basis of ΛQ.
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Since the involution ω interchanges E(t) and H(t) it follows from (11)

and (12) that

ω(pn) = (−1)n−1pn

for all n ⩾ 1, and hence that for any partition λ we have

ω(pλ) = ϵλpλ (14)

where ϵλ = (−1)|λ|−l(λ).

Finally, we shall express hn and en as linear combinations of the pλ. For

any partition λ, define

zλ =
∏
i⩾1

imimi!

where mi = mi(λ) is the number of entries of λ equal to i. Then we have

H(t) =
∑
λ

z−1
λ pλt

|λ| (15)

E(t) =
∑
λ

ϵλz
−1
λ pλt

|λ| (16)

or equivalently,

hn =
∑
|λ|=n

z−1
λ pλ (17)

en =
∑
|λ|=n

ϵλz
−1
λ pλ (18)

Proof. It is enough to prove the the identity (15), since the identity (16) then

follows by applying the involution ω and using (14). From (9) we have

H(t) = exp
∑
r⩾1

prt
r/r

=
∏
r⩾1

exp(prt
r/r)

=
∏
r⩾1

∞∑
mr=0

(prt
r)mr/rmrmr!

=
∑
λ

z−1
λ pλt

|λ|
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Denote (prt
r)mr/rmrmr! by A(r,mr), then∏

r⩾1

∞∑
mr=0

(prt
r)mr/rmrmr!

=(A(0, 0) + A(0, 1) + A(0, 2) + A(0, 3) + · · · )·

(A(1, 0) + A(1, 1) + A(1, 2) + A(1, 3) + · · · )·

(A(2, 0) + A(2, 1) + A(2, 2) + A(2, 3) + · · · )·

(A(3, 0) + A(3, 1) + A(3, 2) + A(3, 3) + · · · ) · · ·

5 Bilinear form and orthogonality

Let x = (x1, x2, . . .) and y = (y1, y2, . . .) be two finite or infinite sequences of

independent variables. We shall denote the symmetric functions of the x
′
s

by sλ(x), pλ(x), etc., and the symmetric function of y
′
s by sλ(y), pλ(y), etc.

We shall give there series expansions for the product∏
i,j

(1− xiyj)
−1.

The first of these is∏
i,j

(1− xiyj)
−1 =

∑
λ

z−1
λ pλ(x)pλ(y) (19)

summed over all partitions λ.

Proof. Let hr =
∑
|λ|=r

mλ be the complete symmetric functions in the variables

xiyj. The generating function is H(t) =
∑
r⩾0

hrt
r =

∏
i,j⩾1

(1−xiyjt)
−1. By (15),

H(t) =
∑
λ

z−1
λ pλt

|λ|. Letting t = 1 gives

∏
i,j⩾1

(1− xiyj)
−1 =

∑
λ

z−1
λ pλ(xiyj)
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for k ∈ Z⩾0, pk(xiyj) = pk(xi)pk(yj), then the result follows.

Next we have∏
i,j

(1− xiyj)
−1 =

∑
λ

hλ(x)mλ(y) =
∑
λ

mλ(x)hλ(y) (20)

summed over all partitions λ.

Proof. We have ∏
i,j

(1− xiyj)
−1 =

∏
j

H(yj)

=
∏
j

∞∑
r=0

hr(x)y
r
j

=
∑
α

hα(x)y
α

=
∑
λ

hλ(x)mλ(y)

where α runs through all sequences (α1, α2, . . .) of non-negative integers such

that
∑

αi < ∞, and λ runs through all partitions.

The third identity is∏
i,j

(1− xiyj)
−1 =

∑
λ

sλ(x)sλ(y) (21)

summed over all partitions λ.

Proof. We first prove (21) for n variables xi and n variables yj; then letting

n → ∞ as usual.

We now define a scalar product on Λ, i.e. a Z−valued bilinear form ⟨u, v⟩,

by requiring that the bases (hλ) and (mλ) should be dual to each other:

⟨hλ,mµ⟩ = δλµ (22)
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for all partitions λ, µ, where δλ,µ is the Kronecker delta.

For each n ⩾ 0, let (uλ), (vλ) be Q−bases of Λn
Q, indexed by the partitions

of n. Then the following conditions are equivalent:

⟨uλ, vµ⟩ = δλµ for all λ, µ (23)

∑
λ

uλ(x)vλ(y) =
∏
i,j

(1− xiyj)
−1 (24)

Proof. Let

uλ =
∑
ρ

aλρhρ vµ =
∑
σ

bµσmσ.

Then

⟨uλ, vµ⟩ =
∑
ρ

aλρbµρ

so that (23) is equivalent to ∑
ρ

aλρbµρ = δλµ. (25)

Also (24) is equivalent to the identity∑
λ

uλ(x)vλ(y) =
∑
ρ

hρ(x)mρ(y) (26)

by (20), hence is equivalent to∑
λ

aλρbλσ = δρσ. (27)

We use A to denote the matrix (aλµ) and B to denote the matrix (bλµ). Then

(25) is equivalent to

A ·BT = I (28)

Also (27) is equivalent to

BT · A = I (29)

Since (28) and (29) are equivalent, so are (23) and (24).
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From (23) (24) and (19) it follows that

⟨pλ, pµ⟩ = δλµzλ (30)

so that the pλ form an orthogonal basis of ΛQ. Likewise (23) (24) and (21)

we have

⟨sλ, sµ⟩ = δλµ (31)

so that the sλ form an orthonormal basis of Λ, and the sλ such that |λ| = n

form an orthonormal basis of Λn. Any other orthonormal basis of Λn must

therefore be obtained from the basis (sλ) by transformation by an orthogonal

integer matrix. The only such matrices are signed permutation matrices, and

therefore (31) characterizes the sλ, up to order and sign.

Also from (30) and (31) we see that

The bilinear form ⟨u, v⟩ is symmetric and positive definite. (32)

The involution ω is an isometry, i.e. ⟨ωu, ωv⟩ = ⟨u, v⟩ . (33)

Proof. From (14) we have ω(pλ) = ±pλ, hence by (30)

⟨ω(pλ), ω(pµ)⟩ = ⟨pλ, pµ⟩

which proves (33), since the pλ form a Q−basis of ΛQ.
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